\select@language {french} \addvspace {10\p@ } \addvspace {10\p@ } \contentsline {figure}{\numberline {2.1}{\ignorespaces Images 256$\times $256 en niveau de gris 8 bits utilis\IeC {\'e}es pour l'illustration des propri\IeC {\'e}t\IeC {\'e}s des filtres. a) l'image de r\IeC {\'e}f\IeC {\'e}rence non bruit\IeC {\'e}e. b) l'image corrompue par un bruit gaussien d'\IeC {\'e}cart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel \IeC {\`a} 25\%.}}{14}{figure.2.1} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sans bruit}}}{14}{figure.2.1} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Bruit gaussien $\sigma =25$, PSNR=22.3~dB MSSIM=0.16}}}{14}{figure.2.1} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Bruit impulsionnel 25\%, PSNR=9.48~dB MSSIM=0.04}}}{14}{figure.2.1} \contentsline {figure}{\numberline {2.2}{\ignorespaces Filtrage par convolution.}}{15}{figure.2.2} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Moyenneur 3$\times $3, PSNR=27.6dB MSSIM=0.34}}}{15}{figure.2.2} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Moyenneur 5$\times $5, PSNR=27.7dB MSSIM=0.38}}}{15}{figure.2.2} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Filtre gaussien 3$\times $3, PSNR=27.4dB MSSIM=0.33}}}{15}{figure.2.2} \contentsline {figure}{\numberline {2.3}{\ignorespaces R\IeC {\'e}duction du bruit impulsionnel par filtre m\IeC {\'e}dian.}}{16}{figure.2.3} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 une passe, PSNR=26.4~dB MSSIM=0.90}}}{16}{figure.2.3} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 deux passes, PSNR=34.4~dB MSSIM=0.98}}}{16}{figure.2.3} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {M\IeC {\'e}dian 5$\times $5 une passe, PSNR=35.1~dB MSSIM=0.98}}}{16}{figure.2.3} \contentsline {figure}{\numberline {2.4}{\ignorespaces R\IeC {\'e}duction de bruit gaussien par filtrage bilat\IeC {\'e}ral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les \IeC {\'e}carts type des fonctions gaussiennes de pond\IeC {\'e}ration spatiale et d'intensit\IeC {\'e}.}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.1$, PSNR=25.6~dB MSSIM=0.25}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.5$, PSNR=28.0~dB MSSIM=0.36}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=1.0$, PSNR=27.9~dB MSSIM=0.36}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.1$, PSNR=26.7~dB MSSIM=0.29}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.5$, PSNR=27.9~dB MSSIM=0.39}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=1.0$, PSNR=27.5~dB MSSIM=0.38}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(g)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.1$, PSNR=26.8~dB MSSIM=0.29}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(h)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.5$, PSNR=26.8~dB MSSIM=0.37}}}{17}{figure.2.4} \contentsline {subfigure}{\numberline {(i)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=1.0$, PSNR=25.9~dB MSSIM=0.36}}}{17}{figure.2.4} \contentsline {figure}{\numberline {2.5}{\ignorespaces Filtrage par d\IeC {\'e}composition en ondelettes et seuillage dur des coefficients inf\IeC {\'e}rieurs au seuil $T$.}}{18}{figure.2.5} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$T=20$, PSNR=26.9~dB MSSIM=0.30}}}{18}{figure.2.5} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$T=35$, PSNR=27.6~dB MSSIM=0.36}}}{18}{figure.2.5} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$T=70$, PSNR=26.7~dB MSSIM=0.37}}}{18}{figure.2.5} \contentsline {figure}{\numberline {2.6}{\ignorespaces Filtrage par NL-means pour diff\IeC {\'e}rentes combinaisons des param\IeC {\`e}tres de similarit\IeC {\'e} $f$ et de non localit\IeC {\'e} $t$.}}{19}{figure.2.6} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$f=2$ et $t=2$, PSNR=28.5~dB MSSIM=0.37}}}{19}{figure.2.6} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$f=2$ et $t=5$, PSNR=28.6~dB MSSIM=0.38}}}{19}{figure.2.6} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$f=5$ et $t=2$, PSNR=29.0~dB MSSIM=0.39}}}{19}{figure.2.6} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$f=5$ et $t=5$, PSNR=29.0~dB MSSIM=0.40}}}{19}{figure.2.6} \contentsline {figure}{\numberline {2.7}{\ignorespaces Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41}}{19}{figure.2.7} \contentsline {figure}{\numberline {2.8}{\ignorespaces Performances relatives des filtres m\IeC {\'e}dians impl\IeC {\'e}ment\IeC {\'e}s sur GPU dans libJacket/ArrayFire, PCMF et BVM et ex\IeC {\'e}cut\IeC {\'e}s sur deux mod\IeC {\`e}le de g\IeC {\'e}n\IeC {\'e}rations diff\IeC {\'e}rentes.}}{21}{figure.2.8} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sur GPU GTX260. Courbe tir\IeC {\'e}e de \cite {5402362}}}}{21}{figure.2.8} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Sur GPU C2075. Courbe tir\IeC {\'e}e de \cite {sanchez2013highly}}}}{21}{figure.2.8} \contentsline {figure}{\numberline {2.9}{\ignorespaces Illustration pr\IeC {\'e}-chargement en m\IeC {\'e}moire partag\IeC {\'e}e mise en \oe uvre dans \cite {zheng2011performance} pour l'impl\IeC {\'e}mentation, entre autres, du filtre bilat\IeC {\'e}ral. a) en vert le bloc de threads associ\IeC {\'e} aux pixels centraux. b-e) les blocs de pixels successivement pr\IeC {\'e}-charg\IeC {\'e}s en m\IeC {\'e}moire partag\IeC {\'e}e. f) la configuration finale de la ROI en m\IeC {\'e}moire partag\IeC {\'e}e.}}{22}{figure.2.9} \contentsline {figure}{\numberline {2.10}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{25}{figure.2.10} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{25}{figure.2.10} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{25}{figure.2.10} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{25}{figure.2.10} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{25}{figure.2.10} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{25}{figure.2.10} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{25}{figure.2.10} \contentsline {figure}{\numberline {2.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{27}{figure.2.11} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{27}{figure.2.11} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{27}{figure.2.11} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{27}{figure.2.11} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{27}{figure.2.11} \contentsline {figure}{\numberline {2.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{28}{figure.2.12} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{28}{figure.2.12} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{28}{figure.2.12} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{28}{figure.2.12} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{28}{figure.2.12} \contentsline {figure}{\numberline {2.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{29}{figure.2.13} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{29}{figure.2.13} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{29}{figure.2.13} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{29}{figure.2.13} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{29}{figure.2.13} \contentsline {figure}{\numberline {2.14}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticit\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{30}{figure.2.14} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{30}{figure.2.14} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.14} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.14} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{30}{figure.2.14} \contentsline {figure}{\numberline {2.15}{\ignorespaces \IeC {\'E}volution du nombre de pixels actifs pour les it\IeC {\'e}ration successives de l'impl\IeC {\'e}mentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs apr\IeC {\`e}s chaque it\IeC {\'e}ration, en blanc.}}{33}{figure.2.15} \contentsline {figure}{\numberline {2.16}{\ignorespaces Segmentation d'une image couleur de 512$\times $512 pixels par l'impl\IeC {\'e}mentation GPU quick-shift de \cite {fulkerson2012really}.}}{35}{figure.2.16} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{35}{figure.2.16} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\tau =10$ et $\sigma =2$}}}{35}{figure.2.16} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\tau =10$ et $\sigma =10$}}}{35}{figure.2.16} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\tau =20$ et $\sigma =10$}}}{35}{figure.2.16} \contentsline {figure}{\numberline {2.17}{\ignorespaces Segmentation d'une image couleur de 2256$\times $3008 pixels.}}{35}{figure.2.17} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{35}{figure.2.17} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift standard}}}{35}{figure.2.17} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift kd-tree}}}{35}{figure.2.17} \contentsline {figure}{\numberline {2.18}{\ignorespaces Segmentation d'images issues d'examens IRM par la m\IeC {\'e}thode des level set \IeC {\`a} bande \IeC {\'e}troite.}}{37}{figure.2.18} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Cerveau 256$\times $256$\times $256 en 7~s}}}{37}{figure.2.18} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Reins et aorte, 256$\times $256$\times $272 en 16~s}}}{37}{figure.2.18} \contentsline {figure}{\numberline {2.19}{\ignorespaces Segmentation d'une image d'\IeC {\'e}paule en 1024$^2$ pixels issue d'un examen IRM par l'impl\IeC {\'e}mentation du snake GVF de \cite {snakegvf06}. Le contour est repr\IeC {\'e}sent\IeC {\'e} en rougeet le contour final est obtenu en 11~s. }}{37}{figure.2.19} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour initial}}}{37}{figure.2.19} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final}}}{37}{figure.2.19} \contentsline {figure}{\numberline {2.20}{\ignorespaces Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}}}{38}{figure.2.20} \addvspace {10\p@ } \contentsline {figure}{\numberline {3.1}{\ignorespaces \IeC {\`A} gauche : d\IeC {\'e}termination des vecteurs $f_{in}$ et $f_{out}$. \IeC {\`A} droite : code de Freeman d'un vecteur en fonction de sa direction, l'origine \IeC {\'e}tant suppos\IeC {\'e}e au pixel central, en noir. }}{43}{figure.3.1} \contentsline {figure}{\numberline {3.2}{\ignorespaces \IeC {\'E}volution du contour lors de la segmentation d'une image de 512$^2$ pixels. La convergence est obtenue \IeC {\`a} l'it\IeC {\'e}ration 14 apr\IeC {\`e}s 44~ms pour un total de 256 n\oe uds.}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation : 4 n\oe uds}}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {It\IeC {\'e}ration 1 : 8 n\oe uds 3~ms}}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {It\IeC {\'e}ration 2 : 16 n\oe uds 1~ms}}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {It\IeC {\'e}ration 3, 32 n\oe uds 1~ms}}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {It\IeC {\'e}ration 7 : 223 n\oe uds 3~ms}}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {It\IeC {\'e}ration 10 : 244 n\oe uds 3~ms}}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(g)}{\ignorespaces {It\IeC {\'e}ration 13 : 256 n\oe uds 3~ms}}}{46}{figure.3.2} \contentsline {subfigure}{\numberline {(h)}{\ignorespaces {It\IeC {\'e}ration 14 : 256 n\oe uds 3~ms}}}{46}{figure.3.2} \contentsline {figure}{\numberline {3.3}{\ignorespaces Influence du contour initial sur la segmentation. Le contour final 1 est celui de la figure \ref {fig-snakecpu-cochon512}.}}{46}{figure.3.3} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation 2 }}}{46}{figure.3.3} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final 2 : 273 n\oe uds 87~ms}}}{46}{figure.3.3} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Contour final 1 : 256 n\oe uds 44~ms}}}{46}{figure.3.3} \contentsline {figure}{\numberline {3.4}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels.}}{47}{figure.3.4} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$d_{max}=16$ et $l_{min}=8$, 1246 n\oe uds en 1.3~s}}}{47}{figure.3.4} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$d_{max}=128$ et $l_{min}=32$, 447 n\oe uds en 0.7~s}}}{47}{figure.3.4} \contentsline {figure}{\numberline {3.5}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels avec une cible de petite taille. Le contour initial est celui utilis\IeC {\'e} \IeC {\`a} la figure \ref {fig-snakecpu-cochon4k}.}}{47}{figure.3.5} \contentsline {figure}{\numberline {3.6}{\ignorespaces \IeC {\'E}volution du co\IeC {\^u}t relatif des trois fonctions les plus consommatrices en temps de calcul en fonction de la taille de l'image \IeC {\`a} traiter.}}{48}{figure.3.6} \contentsline {figure}{\numberline {3.7}{\ignorespaces Calcul des images cumul\IeC {\'e}es $S_x$ et $S_x^2$ en trois \IeC {\'e}tapes successives. a) cumul partiel bloc par bloc et m\IeC {\'e}morisation de la somme de chaque bloc. b) cumul sur le vecteur des sommes partielles. c) ajout des sommes partielles \IeC {\`a} chaque \IeC {\'e}l\IeC {\'e}ment des blocs cumul\IeC {\'e}s.}}{50}{figure.3.7} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {compute\_block\_prefixes()}. La valeur $bs$ correspond au nombre de pixels de chaque bloc, qui est aussi le nombre de threads ex\IeC {\'e}cut\IeC {\'e} par chaque bloc de la grille de calcul.}}}{50}{figure.3.7} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {scan\_blocksums()}.}}}{50}{figure.3.7} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {add\_sums2prefixes()}.}}}{50}{figure.3.7} \contentsline {figure}{\numberline {3.8}{\ignorespaces Structuration des donn\IeC {\'e}es en m\IeC {\'e}moire du GPU pour l'\IeC {\'e}valuation en parall\IeC {\`e}le de l'ensemble des \IeC {\'e}volutions possibles du contour.}}{51}{figure.3.8} \contentsline {figure}{\numberline {3.9}{\ignorespaces Comparaison des cycles de d\IeC {\'e}placement des n\oe uds. Ligne du haut : version s\IeC {\'e}quentielle. Ligne du bas : version parall\IeC {\`e}le. Les segments en rouge sont des segments du contour non \IeC {\'e}valu\IeC {\'e}s, alors que ceux en pointill\IeC {\'e}s sont les paires ayant re\IeC {\c c}u les meilleures \IeC {\'e}valuations parmi les 8 d\IeC {\'e}placements possibles des n\oe uds correspondant.}}{52}{figure.3.9} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour de r\IeC {\'e}f\IeC {\'e}rence.}}}{52}{figure.3.9} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_1$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_2$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le de tous les n\oe uds. Les segments du contour n'ont pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}s. On ne peut pas dire, a priori si le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds impairs. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds pairs. Un seul segment n'a pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}.}}}{52}{figure.3.9} \addvspace {10\p@ } \addvspace {10\p@ }