
1

GPU Edge Preserving Salt and Pepper Image Denoising
C. Spampinato

Department of Informatics and Telecommunication Engineering
University of Catania - Viale Andrea Doria, 6 - 95125 - Catania

e-mail: cspampin@diit.unict.it

Abstract— In this paper a two-phase filter for removing salt-
and-pepper noise is described. In the first phase, an adaptive
median filter is used to identify pixels, which are likely to be
affected by noise (noise candidates). In the second phase, the
noisy pixels are restored according to a regularization method,
which contains a data-fidelity term reflecting the impulse noise
characteristics, to be applied only to the identified (by the first
phase algorithm) noise candidates. The algorithm was firstly
sequentially implemented obtaining very encouraging results in
terms of PSNR and MAE and then an implementation of the
same algorithm was performed using GPU programming with
CUDA, thus increasing the time performance of about 50% with
respect to the sequential algorithm.

Keywords— Impulsive noise, Edge-preserving regularization,
GPU Image Processing

I. INTRODUCTION

In the last decades, the image-processing field has became
more interesting, sustained by the continuous improvements
in electrical and computer engineering. The increasing of the
computing (processing) power has allowed the researchers to
extend the number of applications in this field. As is known, a
typical image machine vision system consists of three linked
building blocks [1] that perform different tasks. An important
step of the lowest level block is the noise removal, since
it highly influences the performance of the overall machine
vision system.
Therefore, the need for an efficient and effective image
restoration method is high and it has grown with the massive
production of digital images and movies, often grabbed in
poor conditions. A typical noise that affects digital images is
Salt and Pepper noise [2], which is caused by malfunctioning
pixels in camera sensors, faulty memory locations in hardware
or transmission in a noisy channel [3]. This kind of impulsive
noise sets the corrupted pixel value to the maximum or the
minimum of the pixels variation range (0 or 255 for an 8-
bit image). During the last fifteen years, a large number of
methods have been proposed to treat “Salt and Pepper Noise”
(more in general impulse noise) from digital images (e.g. [3],
[4], [5], [6]) and many others are oriented for image details
preserving as the filters reviewed in [7]. Most of these methods
are order statistic filters that use the rankorder information of
an appropriate set of noisy input pixels and usually consist of a
general framework of rank selection filters. The median filter is
the most popular nonlinear filter for removing impulse noise,
because of its good denoising power [3], its computational
efficiency [8]. Application of median filtering to an image,
however, requires some caution because it tends to remove

image details while removing noise. Moreover, the perfor-
mance of median filtering is unsatisfactory in suppressing
signal-dependent noise [9] and when the noise percentage is
quite high. To achieve a good compromise between the image-
detail preservation and the noise reduction an impulse detector
must be used before filtering. The filtering is then selectively
applied to regions where there impulse noise is detected. As
far as we know, one the most effective algorithm for edge
preserving in salt and pepper denoising is the one proposed
by Nikolova [6] that applies a variational method for image
details preserving that is based on a data-fidelity term related
to the impulse noise. Based on this approach Chan et al. in
[10] proposed a powerful filter, where the noisy pixel detection
is carried out by using an adaptive median filter, that is able
to remove salt and pepper noise as high as 90%. In this
work the performance of this powerful filter is analyzed with
various images. Let us recall that, more precisely, the filter
consists of the following phases: 1) the noise candidates are
first identified by a detector based on Adaptive Median Filter
and then 2) these noise candidates are selectively restored
using an objective function with a data-fidelity term and an
edge-preserving regularization term. Finally, the algorithm has
been implemented with CUDA, which allows us to increase
time performance of about 50% with respect to the sequential
version of the algorithm. The outline of the paper is as
follows: in the next section the overall architecture of the
denoising filter is outlined. Sect. III shows the used variational
method for noisy pixels restoration. Section IV shows the
performance of the sequential implementation of the described
filter, whereas sect. V describes the CUDA implementation of
the proposed algorithm. Finally, the last section points out the
conclusions and the future work.

II. TWO STEPS EDGE PRESERVING FILTER
ARCHITECTURE

The described filter is a two-phase algorithm, indeed, it
consists of an Adaptive Median Filter classifier for noisy pixels
identification and of a variational method [6] for restoring all
the pixels that have been identified as noisy pixels by the first
block. More in detail the two stages of the algorithm are:

• Noisy Pixels Identification by using Adaptive Median Fil-

ter - Let us denote by ŷ the map obtained by the adaptive
median filter classifier that has an one in correspondence
of the position of the noisy pixels, whereas it has a 0 in
correspondence of the uncorrupted pixels. Hence the set
of noisy pixels (where the restoration algorithm has to
be applied) consists of the overall pixels of the original

2

image y whose values in the ŷ map are equal to 1. Hence
the set of noisy pixels is defined as follows:

N = {(i, j) ∈ A : ŷi,j = 1}
The set of all uncorrupted pixels is N c = N/A, where A
is the set of all pixels and N is the set of the noisy pixels.

• Variational Method for noisy pixels restoration - The
problem of image restoration for edge preserving is an
inverse problem solved by using regularization. In this
work a variational approach, where the restored image
u is the solution of the following optimization problem
restricted to the set of the noisy pixels N .

min
u∈N

F (u) = α

�
R(u) + β

�
D(u, d) (1)

Where d is the image corrupted by the noise, D(u, d) is
the data-fidelity term that is related to the kind of noise
and provides a measure of the dissimilarity between d and
the output image u, whereas R(u) is a regularization term
that uses a-priori knowledge for enforcing the solution, β
and α are the regularization parameters that balance the
effects of both mentioned terms.

III. VARIATIONAL METHOD FOR NOISY PIXELS
RESTORATION

As previously described, once the noisy pixels have been
identified, the restoration step for the edge preserving is then
carried out by using a functional in the form described in
formula 1. Despite of all the functionals for edge preserving
proposed during the last fifteen years, the one used in this
work is:

Fd|N (u) =
�

(i,j)∈N

[|ui,j − di,j |+
β

2
(S1 + S2)] (1)

where
S1 =

�
(m,n)∈Vi,j∩N

2 · ϕ(ui,j − dm,n)

S2 =
�

(m,n)∈Vi,j∩N

ϕ(ui,j − um,n)

where N represents the noisy pixels set and Vi,j is the set of
the four closest neighbors of the pixel with coordinates (i, j).

The considered functional is given by the sum of two
terms: a data fidelity term proposed by Nikolova in [6],
which represents the deviation from a data image y, which
may be marred by noise, and the regularization term that
incorporates the variation of a function that penalizes
oscillations and irregularities, although does not remove high
level discontinuities. The last term is responsible for the
edge preserving. Both methods, according to Nikolova, use
the data fidelity term |u − d|. Generally an iterative method,
related to the percentage of noise, is used for the functional
minimization, [11], so that the convergence rate depends on
the image smoothness. This minimization algorithm works
on the residuals z = u − y of the functional (1) and it is
following shown.

Algorithm for functional minimization

• Initialize z(0)
ij

= 0 for each (ij) ∈ A;

• At each iteration k, calculate, for each (ij) ∈ A,

ξ(k)i,j = β
�

(m,n)∈Vi,j

ϕ̇ (yi,j − zi,j − ym,n)

where zm,n, for (m,n) ∈ V i, j, are the latest updates
and ϕ̇ is the derivative of ϕ that we choose equal to |t|α.

• If ξ(k)i,j = 1, set zi,j = 0. Otherwise, solve for z(k)i,j in the
nonlinear equation:

β
�

(m,n)∈Vi,j

ϕ̇
�
z(k)i,j + yi,j − zm,n − ym,n

�
= sign

�
ξ(k)i,j

�

The updating of z(k)i,k was done according to [11], i.e. that
z(k) converges to ẑ = û − y, where the restored image û
minimizes Fy in (1). By choosing φ(t) = |t|α, the nonlinear
equation (1) can be solved by Newton’s method with quadratic
convergence by using a suitable initial guess derived in [12].

IV. EXPERIMENTAL RESULTS FOR THE SEQUENTIAL
ALGORITHM

The algorithm was firstly implemented sequentially in MAT-
LAB 7.4.0 and tested on a PC with a CPU Intel Core 2
Duo T7700 with 2GB of RAM and with a graphics board
GeForce 8600M GS 256MB. Among the commonly tested
256-by-256 8-bit gray-scale images, the one with homoge-
neous region (Lena, Pepper) and the ones with high activity
(Bridge, Baboon) were selected for the simulations. In the
simulations, images were corrupted by “salt” (with value 255)
and “pepper” (with value 0) noise with equal probability. Also
a wide range of noise levels varied from 10% to 90% with
increments of 20% was tested. The images used for evaluation
of the algorithm performance are shown in fig. 1.

Restoration performance is quantitatively measured by the
peak signal-to-noise ratio (PSNR) and the mean absolute error
(MAE) defined as follows:

PSNR = 10 · log10 2552
1

MN

�
i,j

(ri,j−xi,j)2

MAE = 1
MN

�
i,j

(ri,j − xi,j)2

where ri,j and xi,j denote, respectively, the pixel values
of the restored image and the original image. Moreover,
CPU-TIME (in seconds) was used to test time performance.
Tables 1, 2, 3 and 4 shows the PSNR, MAE and CPU-TIME,
respectively, for Lena, Peppers, Bridge and Baboon images
reported at varying of noise level (from 10% to 90% at step of
20%) and with α set to 1.15. This value was experimentally
identified, in fact, a lower value allowed us to remove noise
but not staircases effect. With a higher value, instead, the
noise could not be fully removed. Hence the selection of
α was a trade-off between noise suppression and detail
preservation as shown in [6]. In our tests we set φ(t) = |t|1.15

3

Fig. 1. Images used for denoising algorithm testing

and β was tuned to give the best result in terms of PSNR.

% Noise PSNR MAE CPU-TIME (sec)
10% 41.90 0.46 834.89
30% 36.07 1.57 2342.126
50% 33.05 2.90 2945.23
70% 29.70 4.98 5890.11
90% 23.57 11.61 9356.24

Table 1. PSNR, MAE and CPU-TIME for different noise levels for Lena

Image

% Noise PSNR MAE CPU-TIME (sec)
10% 42.07 0.71 845.32
30% 37.15 1.23 2361.11
50% 34.96 3.11 3287.19
70% 28.09 5.01 5911.40
90% 22.76 12.36 10297.86

Table 2. PSNR, MAE and CPU-TIME for different noise levels for Peppers

Image

% Noise PSNR MAE CPU-TIME (sec)
10% 36.41 2.39 919.06
30% 32.42 3.94 3149.84
50% 29.33 5.49 5671.03
70% 25.74 8.44 7276.10
90% 21.17 15.71 11833.78

Table 3. PSNR, MAE and CPU-TIME for different noise levels for Bridge

Image

To better appreciate the performance in denoising of the
filter, fig. 2 shows the output images for Bridge and Baboon
when they are affected by 70% of noise.

V. GPU IMPLEMENTATION WITH CUDA

The optimization of the original algorithm was led by
the code profiling according to the Amdahl law [13]. The

% Noise PSNR MAE CPU-TIME (sec)
10% 34.74 3.11 912.141
30% 31.82 4.48 4010.81
50% 29.16 6.29 6025.90
70% 23.91 8.23 8112.34
90% 19.58 17.41 12368.41

Table 4. PSNR, MAE and CPU-TIME for different noise levels for Baboon

Image

parallelization of the code was divided in two steps:

• Adaptive Median filter optimization;
• Variational Method optimization.

The first step was optimized using a matricial implemen-
tation of the adaptive median filter instead of a sequential
one. At this step no GPU parallelization was performed since
some function in the code didn’t use local variables. The
parallelization was made entirely for the variational method.
The matricial implementation allowed us to achieve better
performance for identifying noisy pixels, which means that,
if for instance the execution of the AMF (in its sequential
form) usually takes about 159 seconds for a 256-256 image,
by introducing the matricial implementation it takes about 25
seconds.
The optimization of the variational method was done by taking
into account both CPU and GPU parallelization method. More
in detail, the code has been re-written, in a deterministic
way and without field effects, to solve z(k)i,j in the following
nonlinear equation:

β
�

(m,n)∈Vi,j

ϕ̇
�
z(k)i,j + yi,j − zm,n − ym,n

�
= sign

�
ξ(k)i,j

�

The processing of the set of noisy pixels in the above equa-
tion was performed by the simil-BLAS operations (gfor/gend)

of Jacket (CUDA for MATLAB). Moreover, the computation
of the above differential equation was also CPU-parallelized
with parfor (parallel toolbox MATLAB). The evaluation of
the performance was carried out on Lena Image (256x256) at
varying of the percentage of affecting noise and by comparing
the sequential implementation, the CPU-Parallelization and the
GPU-Parallelization.

4

Fig. 2. Outputs of the proposed algorithm for Bridge and Baboon images affected by 70% of noise.

The obtained results are shown in table 5.

% Sequential CPU GPU
10% 605.354 434.878 370.153
30% 2542.871 1851.267 1376.632
50% 3676.252 2736.652 1931.140
70% 4867.286 3455.712 2676.852
90% 7421.046 5268.942 3784.733

Table 5. Performance (in sec) comparison for solving the differential
equation in the variational method for Lena Image

Therefore, CUDA implementation allowed to increase time
performance of about 50%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a two steps filter aiming at well preserving
image details is proposed. It represents a very promising filter
for removing salt-and-pepper noise in the image denoising
field and its performance in reducing noise and in preserv-
ing image details are good, so that the idea to use it for
image encryption is taking place. Experimental results show
that this algorithm outperforms existing median-based or soft
computing approaches both in the noisy pixels identification
phase and in the restoring phase. Even at a very high noise
level (90%), the texture, the image details and the edges are
not smeared. An important aspect is the efficiency of the
algorithm, indeed, the performance of the proposed filter in
terms of CPU − TIME is quite low even using the GPU
implementation. In fact, the GPU implementation allowed us
to reduce the time taken for denoising of about 50%, but
this is still not enough, especially if it should be used for
encryption purposes. In order to improve the performance,
distributed genetic algorithms on Grid Computing have been
already implemented for the restoration phase but they need
a deeper evaluation, even if early results are encouraging
since a reduction of 10 times (1500 sec) for restoring Baboon
image when it is corrupted with 90% of noise was achieved.
Moreover, we are planning to implement with CUDA the
algorithm proposed by the author in [14], which outperforms
the one here described. Future works will also aim to reduce
more the processing time by using message passing interface
(MPI) architecture.

VII. ACKNOWLEDGMENTS

The work was carried out under the HPC-EUROPA2 project
(project number: 228398) with the support of the European
Commission - Capacities Area - Research Infrastructures.

REFERENCES

[1] E. Davies, Machine Vision: Theory, Algorithms, Practicalities, Third

Edition. Elsevier, 2005.
[2] R. Gonzales and R. Woods, Digital image processing. Prentice Hall,

2002.
[3] A. Bovik, Handbook of Image and Video Processing. Academic Press,

2000.
[4] L. Bar, N. Sochen, and N. Kiryati, “Image deblurring in the presence of

salt-and-pepper noise,” in Scale Space and PDE Methods in Computer

Vision (R. Kimmel, N. Sochen, and J. Weickert, eds.), vol. 3459 of
Lecture Notes in Computer Science, pp. 107–118, Springer Berlin /
Heidelberg, 2005.

[5] F. Li and J. Fan, “Salt and pepper noise removal by adaptive median
filter and minimal surface inpainting,” in CISP ’09. 2nd International

Congress on Image and Signal Processing, 2009, pp. 1 –5, oct. 2009.
[6] M. Nikolova, “A variational approach to remove outliers and impulse

noise,” Journal of Mathematical Imaging and Vision, vol. 20, no. 1,
pp. 99–120, 2004.

[7] J. Astola and P. Kuosmanen, Fundamentals of Nonlinear Digital Filter-

ing. Boca Raton, CRC, 1997.
[8] T. S. Huang, G. J. Yang, and G. Y. Tang, “A fast two-dimensional median

filtering algorithm,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 27, no. 1, pp. 13–18, 1979.
[9] P. Yang and O. Basir, “Adaptive weighted median filter using local

entropy for ultrasonic image denoising,” in Image and Signal Processing

and Analysis, 2003. ISPA 2003. Proceedings of the 3rd International

Symposium on, vol. 2, pp. 799–803 Vol.2, Sept. 2003.
[10] R. Chan, C. Ho, and M. Nikolova, “Salt-and-pepper noise removal by

median-type noise detectors and detail-preserving regularization,” IEEE

Trans. on Image Processing, vol. 14, pp. 1479–1485, October 2005.
[11] C. R. Vogel and M. E. Oman, “Fast, robust total variation-based

reconstruction of noisy, blurred images,” IEEE Transactions on Image

Processing, vol. 7, no. 6, pp. 813–824, 1998.
[12] J.-F. Cai, R. H. Chan, and C. Fiore, “Minimization of a detail-preserving

regularization functional for impulse noise removal,” J. Math. Imaging

Vis., vol. 29, no. 1, pp. 79–91, 2007.
[13] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”

Computer, vol. 41, no. 7, pp. 33–38, 2008.
[14] A. Faro, D. Giordano, G. Scarciofalo, and C. Spampinato, “Bayesian

networks for edge preserving salt and pepper image denoising,” in
IPTA08, pp. 1–5, 2008.

