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Abstract

The variational method has been introduced by Kass et al. (1987) in the field of object contour modeling, as
an alternative to the more traditional edge detection-edge thinning—edge sorting sequence. Since the method is
based on a pre-processing of the image to yield an edge map, it shares the limitations of the edge detectors it
uses. In this paper, we propose a modified variational scheme for contour modeling, which uses no edge detection
step, but local computations instead—only around contour neighborhoods—as well as an “anticipating” strategy
that enhances the modeling activity of deformable contour curves. Many of the concepts used were originally
introduced to study the local structure of discontinuity, in a theoretical and formal statement by Leclerc & Zucker
(1987), but never in a practical situation such as this one. The first part of the paper introduces a region-based
energy criterion for active contours, and gives an examination of its implications, as compared to the gradient
edge map energy of snakes. Then, a simplified optimization scheme is presented, accounting for internal and
external energy in separate steps. This leads to a complete treatment, which is described in the last sections of
the paper (4 and 5). The optimization technique used here is mostly heuristic, and is thus presented without
a formal proof, but is believed to fill a gap between snakes and other useful image representations, such as
split-and-merge regions or mixed line-labels image fields.

1 Introduction

1.1 The Contour Modeling Problem in Image
Analysis

This paper addresses the problem of automatically
creating geometric models for the external boundaries
of objects in a 2D image grid. We call the geometric
representation a “contour” of the object, and reserve
the term “boundary” for its pixel location in the im-
age. A contour representation of objects can be useful
for image understanding in 2D or 3D.

The contour modeling problem has traditionally
received two opposed approaches: region-based ap-
proaches derive a contour representation from a seg-
mentation of the image into well-defined regions,
while edge-based methods use a continuous approxi-
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mation of the original image function, so that bound-
ary points can be characterized by a differential prop-
erty (image gradient or curvature) and a contour rep-
resentation be fitted to the boundary points. In their
simpler versions, both methods use a point-wise cri-
terium to decide if a given pixel belongs inside an
object, outside all objects or at an object boundary.
In the region-based approach, a pixel belongs to the
boundary if it is in the object region and has neigh-
bors in the background. In the edge-based approach,
a pixel belongs to the boundary if it passes a numer-
ical test (e.g. local maximum of the image gradient).
In this early boundary detection step, such methods
do not take into account the fact that those bound-
ary points really constitute a closed geometric con-
tour, with usually strong continuity and smoothness
properties. The next step consists of an approximation
method, which strives to find an optimal contour go-
ing through all boundary points, but has no interaction
with the first step. The deficiency of those methods
lies in the absence of top-down mechanisms, such
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that boundary detection could be guided by contour
constraints.

1.2 Active Contour Models: Approaches and
Previous Work

As an alternative to the traditional approach pre-
sented in the previous section, the methods of vari-
ational calculus (Prenter 1989) have been used by
Kass, Witkins and Terzopoulos (1987) in the field
of contour modeling. The resulting contour models
were named “active contour models” or “snakes.” The
snakes method provides a way to constraint the points
that are tested as boundaries, so that they constitute a
parametric curve (or, more simply, an N-sided poly-
gon). Starting from a user-defined curve, an energy
minimization algorithm is used to deform the contour
model until it fits objects boundaries. The method is
gradient-based, and the criterium that characterizes
boundary points is summed up over the whole contour
to provide the goodness-of-fit measure (or external
energy). A smoothness criterium (or internal energy)
is also added to guarantee good convergence proper-
ties and robustness. Those internal energies provide a
very nice framework for top-down processes as men-
tioned above, and can be theoretically founded on
regularization theory.

Active contour models provide a very appealing
and successful alternative to the more contrived se-
quence of boundary points detection and contour
curve approximation. They have received much at-
tention in the last few years, and have been improved
significantly, notably by Fua & Leclerc (1990), Menet
et al. (1990), Amini et al. (1990) and Cohen (1991).
They have been applied to image understanding prob-
lems in 2D (Fua & Leclerc 1990) or 3D situations
(Nitzberg & Mumford 1990), for tracking objects
over time (Kass et al. 1987; Cohen 1991), or for in-
fering 3D structure from the deformation of apparent
contours in a sequence of images (Cipolla & Blake
1990). Our interest in this approach was motivated
by the need for a fast, interactive tool to assist image
interpretation and morphometry in scientific applica-
tions, such as medical imaging and remote sensing.
Of particular interest to us was the ability to focus on
a given object of interest, specified by the user, among
large sets of data. However, active contours all use an
edge-based definition for object boundaries, and we
felt the need to extend them to region-based defini-

tions, which are more appropriate for color or remote
sensing image analysis problems, and also provide
important clues even in more traditional image anal-
ysis problems.

1.3 Proposed Approach

In this paper, we propose algorithms and strategies
that generalize the variational approach of active con-
tour models to region-based image analysis. In Fig. 1,
we illustrate the action of external forces acting on an
energy-minimizing contour model. Figure 1A shows
the effect of an edge-based energy criterium, as used
in most active contour models. A now classic problem
with this approach stems from the fact that the image
and gradient functions are not very well-behaved (Co-
hen 1991; Leitner et al. 1991). Inside regions, both
derivatives of either the image or the gradient func-
tion vanish, therefore providing no clue to the energy-
minimizing process. Around boundaries, a more sub-
tle situation arises, where one derivative (normal to
the boundary curve) also vanishes. On a theoretical
basis, one should resort to higher-order derivatives
(e.g. image curvature) or piece-wise continuous im-
age models (preferably with explicit image disconti-
nuities) to correctly model the boundaries (Leitner et
al. 1991). In practical terms, most recent active con-
tour models turn the difficulty by pre-processing the
edge-data, e.g. through the use of a distance func-
tion.

In Fig. 1B, a region-based criterium is illustrated.
Instead of a point-wise edge criterium, we use sta-
tistical models of the object region (enclosed by the
contour model) and background region. If a homo-
geneous region against a homogeneous background
is anticipated, the forces are defined in the following
way. All contour points with a neighborhood that fits
the object model are pushed outside by centrifugal
forces. Conversely, all contour points with a neigh-
borhood that fits the background model are pulled in-
side by centripetal forces. Both situations are depicted
in Fig. 1B, and it is easily seen that this conjectures
an external force field F(M), defined for all image
points M on the contour curve, and aligned to the
normal N to the contour curve (oriented from object
to background in Fig. 1). The force magnitude should
also be proportional to the difference of statistical fits
to object and background. A convenient notation for
this is the following:
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Fig. 1. Edge-based and region-based external forces acting on
a contour model. (1A) Edge-based forces. An edge-map is esti-
mated from the original image, and the x- and y-derivatives of
the edge-map function are evaluated in every sampled point M.
(1B) Region-based forces. Statistical models for the object and
background regions are estimated from the original image values
and current contour geometry. Statistical fits are evaluated in every
sampled point M.

F(M) = [ object{ M) — background(M) ] N(M) (1)

Contrary to edge-based models such as snakes, this
external energy cannot easily be derived from a poten-
tial energy, because it is only defined along the con-
tour curve, and is therefore not a point-wise function
in the image plane. This paper proposes an approach
that closely follows the intuitive view of Fig. 1B,
while providing a more formal definition of the en-
ergies and forces involved, as well as optimization

strategies suited to experiment with them. The result-
ing algorithm, named “anticipating snake,” eventually
captures the essence of the original snake approach,
but in a very different computational setting, owing
much to region-contour interaction methods such as
simulated annealing relaxation (Geman et al. 1990)
and anisotropic diffusion methods

Thus, in the following section of the paper, we will
introduce a contrast measure based on a region statis-
tical image model, which will allow us to use region
energies to drive a contour model, and an investiga-
tion of the local aspects of variational edge detection
methods will be presented, showing the advantages
and failings of both edge-oriented and region-oriented
contour models. Then, the optimization procedure and
heuristics necessary to fit contour curves to object
boundaries following our local, region-based scheme
will be presented in the third and fourth section of the
paper. This will include an important discussion on
scale-change issues, and it will be shown how region-
based active models can be devised to use a scale
heuristic (section 3) and a diffusion heuristic (sec-
tion 4) while they are being optimized. The last sec-
tion of the paper will allow us to present and discuss
an implementation and some results of the method,
with application to different kinds of images.

2 Edge and Region Based Contour Models
2.1 Minimum Principles for Contour Models

Using a minimum principle to define the loci of ob-
Jject contours in an image is appealing, because it
corresponds to the intuition of the gestalt definition
of shape, which is perceived as a stable, minimum
configuration of sensed data. Accordingly, minimum
principles have been used extensively in vision re-
search to reconstruct shape from lower-level image
data. Active contours are a special case of such re-
construction problems. In order to set those models
in a general framework, we will refer to the notations
of Fig. 2 throughout this paper, whether dealing with
snakes or anticipating snakes. Our general formula-
tion is as follows. Given an image and a hypothetical
object contour M (s), we define a set of interaction
forces on every point in the contour, so that every
deformation of the contour can be quantified with an
energy transition §W, basically equal to the work of
the interaction forces during deformation. Then, any
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M (s)
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Fig. 2. Deformation of a contour model. Points on the contour are deformed from M k(s) attime k to M**!(s) at time (k+1). The deformation
is in direction U (s) and has amplitude ¢(s). The contour model is defined by a set of forces F(s) such that §W = t(s) F(s).U(s).

particular contour will be a solution of the contour
model if it is a local energy minimum, i.e’

§W > 0 for all deformations § M (s) 2)

Inversely, when we set out to define a contour model
to solve an application problem, we must insure that
actual object boundaries are solutions of (2)—this is
our first minimum principle. In addition, we should
favor models for which all solutions of (2) are indeed
object boundaries (no false local minima). This con-
stitutes a second minimum principle. Devising an ac-
tive contour model, or equivalently a set of interaction
forces, meeting the requirements of those two mini-
mum principles is a tremendous task in the general
case. If the problem is somewhat restricted, e.g. by
use of “proper” initializations from which solutions
can be obtained, or with rigid constraints, then useful
models can be devised. In the rest of this section, we
will first review the method of snakes, which is one
such restricted method of practical value, with exter-
nal forces driven by the image gradient. From there,
we will then introduce our region-based method of
anticipating snakes.

2.2 Snakes: A Gradient-Based Contour Model

2.2.1 Overview of the Snakes Method. Capturing the
local structure of discontinuities is a difficult process,
as illustrated by Leclerc & Zucker (1987), because
many different situations can arise. One key definition
for local edge modeling is that of the maximal step
edge normal to the direction n at point (x, y), where
G, is the image gradient taken in the direction n
(Haralick 1984):

Gy,

=0 3
an ©)

Unfortunately, this equation is usually not easily
solved, so that a more tractable version must be
adopted instead, using the total norm of the gradi-
ent G(x, y) = [l (x, )l

d G0 GR 0

&0

4

Direct resolution of equations (3) or (4) is possible
in the form of a parametric solution curve M(s),
given an exact initial position M (sp) on the actual
object boundary. This point of view has been advo-
cated recently, because it solves exactly for the pre-
cise boundary, in cases when precision is the focus of
image treatment—e.g. for medical applications (Cin-
quin et al. 1990). But in many other image vision
problems, where robustness is the focus of interest,
one must resort to regularization techniques to handle
equations (3) or (4) efficiently.

The variational method has been introduced to
cope with the difficult numerical problems encoun-
tered while trying to solve equations (3) or (4) on a
local basis only. The interpretation of equations (3)
or (4) becomes that of a maximal contrast condition
i.e. minimization of gradient-based energies

> oM 2
Eine — G, (M, W) or Eyy — G*(M) (5)
relative to small variations or deformations of the
parametric curve M(s). The internal energy E;,
which appears in this minimum principle has the in-
terpretation of a regularizing term such as curvature
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or arc length, The original snakes algorithm (Kass et
al. 1987) uses a linear combination

aM M
all—I* + Bl —-1? 6)
as ds?

which can be expressed using a finite difference
scheme in the form of a rigidity/elasticity matrix B;;
if the contour curve is sampled into N points, so that
the function M (s) can be approximated by the 2N-
dimensional vector M; = [(x;, y;)i = 1..N].

The minimum principle imposes that the energy
integral over the whole solution curve M (s) be mini-
mal: as such, it has no immediate local interpretation,
although the Euler-Lagrange method can be used to
transform the global, compound energy minimization
back into a differential equation in M, %' and "}M
(Kass et al. 1987). Using equations (5) and (6), and
the notations of Kass et al. (1987) and Szeliski &
Terzopoulos (1989), a finite difference scheme can be
used to express the total energy as a quadratic form
of the (discretized) position vector M (see appendix):

E =i ['MBM —' MVG?) @)

A natural solution for variational contour optimiza-
tion is the classical gradient descent stmtegy Clearly,
the gradient of expression (7) is BM — VGz, so that
a step from M* to M**! can be taken at time 7% such
that

, Iviua,
M = pmE [BM" = 5vc~] (8)

Equation (8) introduces a constant step-size ¢ which
controls the rate of deformation of the algorithm, and
plays an important role in all active contour optimiza-
tion schemes. A variation on this theme is suggested
by (Kass et al. 1987), resulting in a two-step, semi-
implicit scheme with faster convergence, because ¢
can then be chosen arbitrarily large while equation (4)
imposes the condition t < mm{b') This yields a pow-
erful treatment of internal energies (as should be ex-
pected), but leaves many pratical issues unanswered
as far as external energies are concerned (those as-
pects of the snakes method have been detailed and
discussed in Fua & Leclerc (1990) and Amini et al.
(1990).

2.3 Anticipating Snakes: A Region-Based Contour
Model

2.3.1 Region Statistics and Image Models. Because
the method of snakes relies entirely on its poten-
tial energy E(x,y), its domain of application has
remained limited. One limitation is that it is some-
times not possible to provide such a function, because
of image non-stationnarity. Another limitation is that
regional criteria such as color or texture cannot eas-
ily be integrated into a potential function (unless a
segmentation of the image can be provided). Varia-
tional methods have been described, which incorpo-
rate gradient and region criteria into a single energy
function (Mumford & Shah 1985; Grossberg 1987;
Geman & Geman 1984; Marroquin et al. 1987; Ge-
man et al. 1990; Shah 1990). Those methods differ
fundamentally from snakes, because they attempt to
model the image intensity function, as well as its
object boundaries. Although their theoretical impor-
tance is enormous, none has led to significant prac-
tical solution, most notably because of mathemati-
cal difficulties documented in e.g. Mumford & Shah
(1989). In this paper, we take a less rigorous ap-
proach, drawing mainly on heuristic solutions, in or-
der to show that region criteria can indeed be used
to guide a contour model, with a quality of results
comparable to that of snakes or related models. In
our anticipating snakes method, we replace energy
criterions such as (5) by other photometry functions,
taking into account the local partition of the image
into an object region and a background region. An
intuitive interpretation of the approach will first be
presented, and then expanded to a complete mathe-
matical treatment suitable for use in the rest of the
paper.

The basic idea is that a given closed contour model

= {M(s),s in [0, 1]} partitions the image plane
into an inside (or object) region and an outside (or
background) region which, along with a statistical
model, may be fitted to the image data, Thus, an
alternative to gradient-based schemes will consists
in choosing local changes from M*(s) to M**+'(s)
in a given direction U (s), with amplitude ¢(s), such
that the new partition improves the fit. An intuitive
implementation of this approach would use separate
statistical models Iopjec(x, y) and Tbackgroitnd (X3 3)-
Those models would be tested against the given
image data /(x, y), based on a mean-square-error
criterion:
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abject
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background

While (9) readily takes on the interpretation of an en-
ergy, it still cannot satisfy our minimum principles,
because any arbitrary contour can be a local mini-
mum in homogeneous parts of the image. We there-
fore need a more constrained energy definition, so that
energy minima occur only at actual image boundaries.

2.3.2 A Region-Based Energy Model for Active Con-
tours. In this section, we will use an image contrast
measure best known in the context of split-and-merge
methods as the fusion energy of the regions (or their
Ward distance) (Beaulieu & Goldberg 1989). Using
the notations and conventions of Fig. 3, we define
the region energy W*¢"(R;) of a given region Ry
as in Leclerc & Zucker (1987), Beaulieu & Gold-
berg (1989), i.e. the image functions 7 (x, y) (intensi-
ties, colors or textures) are approximated as a linear
combination of basis functions K;(x, y), using a least
squares scheme:

16, = [ ki) + el o) (10)
i=1
The region energy is defined as the sum of squared
errors Agl(x, y), with subscript k to remind us that
the error-of-fit function A,/ depends on the region
described:

er-gimr(Rk) = [! Rk“Ak!(Is _y)”zdxd}’] (l [)

This scheme can be devised to fit any possible set of
basis functions K;(x, y), according to the same least
squares rule. We then proceed to define the contour
energy of a closed curve C, bounding an internal re-
gion R;, and an external region R,,,, as depicted in
Fig. 4A. We want to derive the contour energy from
neighborhood region energies such as in (6). A sim-
ple solution to this classical problem is to introduce
the union R;, + R,,. We can then write the classical
Ward distance between regions R;, and R,

D[Ry, Ry] = WHWEOH{R:’N + Rowr) (12)
- wr(‘gl'nu(Rm) ol Wrc;{irm(Rm”)
This is defined by Beaulieu & Goldberg (1989) as

b omi 43

Fig. 3. Notations for image regions. Image intensity /(x, y) is
approximated by a region model fi(x, y) specific to region Ry.
The error defines a new image function A f;(x, y).

the energy needed to merge the two regions R;, and
Rou:. We are thus entitled to interpret it as the energy
needed to disrupt the bounding contour C between the
two regions, and we set W (C) = D[R;,, Rou].
Such a contour energy can be interpreted as the
amount of region energy absorbed (or explained) by
the contour curve C at steady-state.

We now consider a deformed version C + §C of
the original contour, and proceed to compute the
variation §W of the contour energy during defor-
mation. To make further developments easier, we
introduce two smaller regions §R;, and §R,,,, cor-
responding to outwards and inwards deformations re-
spectively, as in Fig. 4B. Note that the inside (respec-
tively outside) region is now R;,+8R,,, (respectively
Ry + 8 R;y) just before deformation, and R;, + 8R;,
(Rousr + 8 Ry ) just after deformation. Since the union
Rin + Rouw + 8Riy + 8 Ry is not changed by the de-
formation, we only need consider the negative terms
in (7). We thus write the contour energies as

Wmm‘rmr (C) i Wl] - W""<‘:i{m{Rm - (SR(,":)
= W“"cmu (an il SR‘;")
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(a)

{b)

Fig. 4. Regions around a contour model. (4A) Inside and outside regions for a contour model at steady-state. (4B) Inside and outside regions
during a deformation. R;, and R, are defined as those regions which remain entirely inside or outside the curve during all deformations.
The actual regions inside and outside the curve differ from those by § Rjy and 8 Ry;.

W(.-GHIUHF(C + SC) — WO - . Wr{"i”lon(Rl_" + BR:_”)
- WMHE{HI(RW.' = ER(m:) (13)

The energy for unions of disjoint regions can be fur-
ther developed into a sum of the individual region
energies and their Ward distance, thus

Wregi.rm(A + B)
Bt Wreg:'mr(A) e W“‘R“’"(B) + D(A, B)

Using (14), we can transform (13) so that all indi-
vidual region energies are cancelled out when we
compute the difference §W = W (C + §C) —
weenterr (), and only Ward distances remain, thus

(14)

W = [D(Ri,, ‘SREM) = D(Rours SREN)] (15}
r [D(R.rmn ‘SRam) o D(Rinv 3an)]

When applied locally, this expression becomes even
simpler, because local deformations will be either ex-
panding (§ R, = 0) or retracting (§ R;, = 0), so that
only one of the two terms in (15) need to be eval-
uated locally. More specifically, we now study the
case when an infinitesimal deformation §M (s) is ap-
plied to a point M (s) along the curve. The situation
is depicted in Fig. 5 for the two possible cases of
expansion and retraction. From (15) we can write the
force F(s) acting on the point M (s), such that

SW = F(s).8M(s) (16)

Fig. 5. Expansion and retraction of a contour model. Local interior
and exterior regions are shown for each case.

In the case of a retraction, we find that

F(s) =
SM(s) )

D(Ryu, 6R) — D Ry, 8R TR Ad 7112
L2 ensy B DA g e

is a solution of (16), as can be easily checked out.
Similarly, a solution of (16) for the case of an expan-
sion is



236 Ronfard

F(S‘) 2

SM(s) (18)
8M ()]
Both cases can be unified if points M(s) are con-
strained to deform along the oriented normal N (s) to
the contour. Assuming that the orientation is toward
the outside, as in Fig. 7, and that the deformation is
in the form §M(s) = t(s)N(s), then (17) and (18)
simplify to the single case

[D(Rim 5R) T D(Ronrs ‘SR)]

Fis) = (DR, 3B) = DR, SR (19)
which is the exact form that was anticipated in (1)
for the idealized region-based approach in the intro-
duction to this paper (see Fig. 1B). This expression is
very important for our active contour scheme, because
it makes explicit the energy variations as a function
of deformation, in a computationally attractive way.
In this paper, we will use the notation 3% to denote
the pseudo-force defined by (19). This is to reminds
us that the pseudo-force is not an external field de-
rived from a potential energy, but really a function
of the contour curve and pixel values in its image
neighborhood. We still refer to F(s) or 3%(s) as a
force, because it is used as a force. Since an active
contour will usually be discretized and approximated
by a piece-wise linear curve, we next review how this

changes the computation of energies and forces.

2.3.3 The Discretized Anticipating Snake Model.
The previous section has shown that the energy vari-
ations and forces acting on a contour model cannot
be expressed analytically as simple functions of the
position of curve points M (s) and their tangent vec-
tors, but involves computing the deformation regions
as well. Therefore, we cannot use the Euler-Lagrange
method to transform the energy-minimizing problem
into a differential equation. This, of course, is due to
the fact that the region derivatives (or Ward distances)
depend on the image data in a more intricate fashion
than in the case of snakes. Accordingly, it is prefer-
able to use a discretized version of the contour, and
express the local forces in this framework, much in
the same way as Kass et al. (1987) derived their sim-
pler equations using a finite difference approximation.

Our next step will be to partition the object and
background neighborhoods of the contour into small
local neighborhoods R;, following a discretization of
the contour curve itself, as in Fig. 6. For the purpose

RE= DY
out 'fout}

Fig. 6. Discrete regions of deformation. All deformations of point
M (i) are confined to its inside and outside regions.

of prototyping our approach, we used a neighborhood
structure described in Fig. 7 and section 3 below. We
now write the energy as a sum of contributions from
every contour point:

wc‘mlmnr = W(I + Z W;'NT(MJ;}

i ok (20)
_Z[ W resion (R:") + yresion (R:m; )]

where W}y (M') is an internal, elastic energy, as
defined in Kass et al. (1987). This approximates the
real energy field whenever local neighborhoods parti-
tion the entire image plane, as in Fig. 6. Smoothness
and rigidity terms can be transformed into finite dif-
ferences as in (3), (16), Kass et al. (1987). External
forces can still be computed as in (19), but using
only terms belonging to one particular point M’, so
that the local dissipated energy during a deformation
SM' amounts to:

aw! : :
[-5?-}- BU‘M}](SMf (21)
I
Practical implementations of (21) can vary greatly,
e.g. region statistics can be modeled separately for
each point M, hardware can be used to produce the
goodness-of-fit functions, or the image function itself
can be approximated continuously and calculations
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isoparametric t-curves

Isoparametric s—curves

Fig. 7. Local coordinates. Choosing the normal direction for all deformations defines a local system of coordinates (s, t). Curves of constant
t are the directions of deformation. Curves of constant s are iso-deformation curves. The real deformation will be M (s} +1(s)N(s5).

performed analytically. In this paper, we present the
first (and simpler) solution.

2.4 Internal Energy and Spline Models

Following Kass et al. (1987), we have written explic-
itly the internal energy terms in (7) and (21). We are
now going to cancel those terms out, and use simpler
kinds of contour models with external forces only.
The reason is the following. In the regularization ap-
proach to snakes, a key issue lies in the choice of
a common scale unit between internal and external
energy terms (Ronfard 1990). Internal energies were
first introduced by Kass et al. (1987), drawing on
the theory of approximating spline functions (Laurent
1972), which have classically handled the difficulty
by use of cross-correlation methods (Sharahray & An-
derson 1989). No such solution extends to the case of
equations (17) or (22), because of the strongly non-
linear image forces (Ronfard 1990). This is therefore
a very difficult problem, and one that this work does
not try to address.

L~

{ M(s))

Fig. 8. A simple local structure for variational edge detection.
We approximate local coordinates (s, t) with a discrete set s =
l...NL t==P...P, ie. alocal image grid (s, 1).

In the following, we will use instead a simplified
version of contour models, similar to the B-snakes




238 Ronfard

described in Menet et al. (1990) or the spline-snakes
in Cinquin et al. (1990). In essence, those spline mod-
els imbed the internal energy into a B-spline repre-
sentation. Internal energy becomes an implicit func-
tion of the sampling rate & = S/N along the contour.
Control points or knot points can still undergo de-
formation, under the influence of external interaction
forces alone, and other intermediate points are ap-
proximated as a B-spline curve fit to the deformed
control or knot polygon (see section 5.2 for more
details on this). The same basic procedure has been
reported also by Cipolla & Blake (1990) as well as
Menet et al. (1990), Cinquin et al. (1990) and Ron-
fard (1990), so that we will resort to it without further
justification in this paper, as a powerful and efficient
short-cut for illustration of our energy model.

3 Local Depth-Adapting Algorithm

3.1 A Simple Neighborhood Structure for
Anticipating Snakes

3.1.1 Energy and forces. The snakes equation (8)
establishes a global evolution rule for all sampled
points on an active contour model. The first part of
this paper has been devoted to present a different ap-
proach for active contours, consisting in the choice
of arbitrary directions of deformation and local evolu-
tion rules, one for each point in the contour curve. We
now present algorithms and heuristic methods useful
for an active contour model based on equation (19).
Using the discrete form of equations introduced in
this paper makes all derivatives and forces depend
explicitly on image scale (the characteristic size of
image neighborhoods around the contour curve). The
choice of any particular image scale can be adapted,
either geometrically (to fit local image characteris-
tics) or temporally (to improve the efficiency and
robustness of the optimization process). The adap-
tive nature of the algorithms presented in this sec-
tion makes them particularly suited for interpretation-
guided, semi-interactive segmentation, as will be
illustrated later.

For the purpose of clarity, we will focus in this pa-
per on the very simple neighborhood structure shown
in Fig. 7 and Fig. 8, which can be easily and ef-
ficiently implemented. It consists in separate, non-
overlapping L-pixel-wide bands centered on sampled
points M (s). These structures are (2P + 1) pixel-deep
and directed along the normal to the curve N(s). All

image-contour interactions at point M (s) thus orig-
inate from a neighborhood M(s) + #(s)N (s), in the
narrow image strip following the estimated local nor-
mal N(s), as in Fig. 8. The normal vector N (s) may
be obtained from the B-spline expansion of the con-
tour curve, provided the sampling is not too fine. In
practice, better estimates will be obtained if a 1-D
gaussian-derivative kernel is convolved with the sam-
pled contour M (s) (s = 1 ... N). This is important to
insure that the mapping from (s, ¢) to a neighborhood
of the curve C in the image plane is one-to-one. This
also allows finer sampling intervals on the contour
curve, independently of its original B-spline repre-
sentation (Ronfard 1991).

We compute image-contour interactions from the
neighborhood structure in Fig. 8 in a straightforward
fashion, using the simplest form of equation (10),
i.e. with a piece-wise stationary image model, so that
the error-of-fit functions A,/ are simply the average-
corrected image values. In this case, the region ener-
gies are simply regional image variances

wreg:'rm ( Rk) e

5 (22)
[ (x, y) = {I)ll"dxdy
Ry
and the contour energy is just the classical (stationary)
Ward distance between regions R;, and R,,,, i.e.

W (C) = D[Rin, Rou] (23)

The general expression for the image forces acting
on the contour curve during a step-wise deformation
t(s) — t(s) + Ar(s) then becomes

ds
[At(s)]

where D;,(M(s))(resp.D,, (M(s))) denotes the
Ward distance between R;, (M (s))(resp.Ryu (M (s)))
and the L-pixel deep region §M (s) around M (s), as
shown in Fig. 8. This is the simplest possible imple-
mentation of equation (21), and it has the interesting
properties that the local deformation state of the con-
tour curve is completely described by the parameter
t(s), and image forces are local to the neighborhood
structure M (s) + t(s)N (s), as prescribed.

. I
ilirpe f (DinlM(5)] = Do [M(5))) (24)
aC 0

3.1.2 Computational Framework. We can now pre-
sent a computionally simple variation scheme, based
on the above discussion, as a candidate to solve the
active contour optimization problem. For each iter-
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ation step of the procedure, we have the following
sequence:

¢ Compute normals N(s) for all sampling points
M(s), s = 1...N, and build the image statistics
in the neighborhood image regions.

e Starting from undeformed points M (s) = A(s, 0)
take as many steps as possible in either one of the
deformation directions M (s)+4-t(s)N(s) or M (s)—
tN(s), t(s) =0... P, as long as the power of the
external forces remain positive

Dip[M(s)] — Do [M(s)DAt(s) > 0 (25)

¢ Compute a new contour from all deformed sam-
pled points, using them as control points for an
regular cubic B-spline curve. Such a curve will
not interpolate sampled points, but merely approx-
imate them with the best-looking piece-wise cubic
curve, in a certain sense (Laurent 1972). This is
sufficient for our purpose, because we re-sample
contour points in every iteration.

In order to proceed successfully with such a sim-
ple scheme, several issues have to be dealt with. First,
a number of parameters remain unspecified, i.e. the
maximum depth P allowed for step-wise deforma-
tions in a single iteration, the sampling rate N of
points along the curve, the gaussian variance ¢ used
to estimate smooth normals along the curve. Along
with neighborhood width L, those parameters deter-
mine all scale choices for our model (see Fig. 9). In
contrast to the original snakes (see Fig. 10), those pa-
rameters are all local to the iterative scheme, and can
therefore be adapted more easily than a filter size for
edge detection, Indeed, experience has shown that all
scale parameters should be modified during the opti-
mization process. Thus, heuristic methods for deter-
mining N and P in each step of the procedure will
be presented here (we introduce no such refinement
for o, which we in fact consider as a function of N
and P), while the last section of the paper will be
devoted to the width scale parameter L.

A different line of problems arise from the choice
of the Ward distance. We use the sign of Af(s)
(Diy[M(5)] = Dy [M(s)]) in order to determine in
which direction the curve should be deformed. It
would be comforting to know that this expression
vanishes on boundary points. This is not the case,
however, and section 3.3 discusses transformed dis-
tance functions with a better behaviour in that respect.

- Discratization
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Fig. 9. Scale factors in the anticipating snakes model. Scale choices
are needed in (1) to discretize the contour; in (2) to estimate
smoothed normals along the contour; in (3) to decide image neigh-
borhood size (depth 2P + 1 and width L).

3.2 Local Depth-Adapting Strategy

3.2.1 Scale-Space Strategies. The point in this sec-
tion is to adapt neighborhood size P (see Fig. 8 and
Fig. 9) to the scale at which the object-to-background
contrast is maximal. A compromise must therefore
be found between smaller neighborhoods (for which
the norms have no statistical significance) and larger
neighborhoods (where more than two regions are in
the scope of M(s) + ¢t(s)N(s)). The second term of
the alternative represents the most difficult situation,
because all the equations used to model edges assume
two regions (possibly identical) only. This makes the
traditional coarse to fine, scale-space approach advo-
cated by Kass et al. (1987) very dangerous, since the
local forces acting from the image at coarser scales
may become unfounded and misleading, and no ver-
ification can be made at finer scales.

This failing is illustrated by the dominant role
played in such cases by the automatic internal forces
of snakes or other related models (elastic forces, pres-
sure). In such cases, active contours are driven away
from their target object boundaries, without being
given any chance to recover them (since only finer
scales will subsequently be examined, to improve—
not correct—the first coarser optimization steps). Fol-
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Fig. 10. Scale factors in the snakes model. Scale choices are needed
in (1) to compute the image gradient; in (2) to compute the gradient
derivatives in x and y; in (3) to discretize the contour and choose
uniform step .

lowing Leclerc & Zucker (1987), we have investi-
gated the opposite, fine to coarse strategy. This ap-
proach starts with very small neighborhood structures
(P =1,2,3...) even though a high level of noise
may be present at such scale. Noise in earlier stages
of optimization can be dealt with because the contour
curve is regularized, and the steps taken in each iter-
ation are very small (¢, < P). Then P is increased
while optimizing, until all neighborhoods become sta-
tistically significant. The optimal deformation state is
then easily obtained in a few iterations.

3.2.2 Depth-Adapting Algorithm. This strategy cap-
tures the intuitive idea behind active contour mod-
els, that optimization should use local image analysis
whenever available (in close neighborhoods of object
boundaries) and internal cohesion forces when the
image profiles are locally flat. The fine to coarse ap-
proach also offers an efficient heuristic for increasing
the dependency of the variational procedure on im-
age characteristics, since object boundaries are only
a finite distance away from the initial contour po-
sition, and will be reached in a finite number of
steps—without oscillations. This of course assumes
a control mechanism for stopping at interfering ob-
Jects appearing in the background, as the scope of the
neighborhood structures extends. All of the above ob-

servations can now be summed up in the following
depth-adapting algorithm:

[1] Start with an initial B-spline curve, sampled uni-
formly after arc-length s. Then choose an initial
depth parameter P = Py (preferably d < Py < D
where d is the min-distance from the initializer to
the target object and D is the min-distance between
objects in the image).

[2] Iterate the basic steps : fit all control points in the
B-spline basis, compute normals N(s) at control
points M (s), extract (2P + 1) image pixels in the
direction of N(s) for every s, using a fast line
drawing algorithm such as Bressenham’s, move
all control points step-wise from M (s) to M (s) +
tN(s), —P <t < P, according to the sign of the
dissipated energy. This is simply the work of the
external pseudo-force from equation (19).

[3] Increment P, and compare energy levels ob-
tained in step [2] with those of the increased neigh-
borhoods, allowing only lower energies at coarser
scales. All points with increasing energies at this
stage should become inactive or attached.

[4] Iterate steps [2] and [3] until no more control
points are active.

An application of this algorithm to a brain tomog-
raphy scan is presented in Fig. 11. The initial curve
is an interactively designed B-spline, sampled every
five pixels in a 256 x 256 image. Ten iterations were
performed before convergence, with increased depth
ranging from five to fifteen pixels on each side of the
curve. Since all objects in this image are isolated and
offer a roughly constant contrast to their background,
the algorithm performs well in this case.

3.3 Controlling Stability

When computing the difference of the Ward distances
D, [M(s)] and D, [M(s)], we simply check for its
sign, in order to determine in which direction the
curve should be deformed. This raises a difficult prob-
lem for stability issues, since deformations will al-
ways occur, regardless of the magnitude of the en-
ergy term. We would like to have a threshold value
here to tell us when the external forces acting on the
curve are so small as too be negligible. This is not
possible within the Ward distance formulation, how-
ever, because it does not capture the intuition that
external forces smoothly vanish around real object
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Fig. 11. Application of depth-adapting algorithm to medical imaging segmentation.

boundaries. Instead, it is easily seen that the force
magnitude D;, — D,,, may be as great as the Ward
distance [R;,, Rou] in the vicinity of a highly con-
trasted edge, whereas regions without edges can have
very low D;, — D,,, altogether. In such cases, the
threshold value would have all optimal points move
in and out around an object boundary, while those
points that are far from optimum remain in a fixed
(and erroneous) position. In order to avoid this unde-
sirable behaviour, we can use the sign and magnitude
of other functions of the involved Ward distances. For
example, we can use

Diy[M(s)] — Do [M(5)]
D[Riu an.-.r]

which appears as a formal derivative of the logarithm
of the Ward distance, and enhances the forces in re-
gions where the overall contrast is low, so that points
in those areas can be moved away. Another possibil-
ity is

(26)

[Din[M ()] — Dour[M(s5)])e™*PlRinRt] (27)

which can be interpreted (loosely) as the derivative of
the exponential function of the Ward distance. This
also has the desirable effect of boosting the forces
in regions away from real boundaries, while having
them vanish at higher-contrast edges. Since the ex-

ponential in (27) is better-behaved than the ratio in
(26), we have used (27) in our implementation.

The use of the exponential further brings a nice sta-
tistical interpretation, since e ¥PlRinRul is the Boltz-
mann distribution for energies D[R;, R,.], mean-
ing that it is (up to some factor) the probability of
the image intensity at M, given its neighbor pixels
and the hypothesis of the contour curve C passing
through M. Let’s denote this conditional probability
P(I(M)|C in M). Itis classically related to the prob-
ability of the curve C passing in M, conditionally to
the observed intensity I (M), by the Bayes rule which
we write here:

P(C in M|I(M))
_ PUM)|C in M)P(C in M) (28)
4 P(I(M))

so that, taking both prior probabilities P(C in M) and
P(I(M)) to be uniform, our evolution rules can be
shown to solve for the most probable contour curve
position, given the image intensity function 7(M)
(Ronfard 1991).

Expressions (26) and (27) are very useful to en-
hance the performances of our variational scheme,
We thus substitute one of the expressions (26) or (27)
into the computation of image interaction forces. This
alteration of our variational definition for optimal im-



242 Ronfard

Fig. 12. Application of depth-adapting algorithm to histological morphometry.

age contours makes it remarkably similar to proba-
bilist, non-determinist schemes such as described in
Geman et al. (1990), where the exponentials of a
quadratic contrast function play a central role.

Our second example (presented in Fig. 12) is a
case where direct application of the depth-adapting
algorithm fails if we do not use (27), because of
the texture in the lighter background. Those bone
biopsy images were digitized and contours extracted
at interactive rate from a photo-microscope. Because
the internal structure in the background has a lower
contrast, using (27) results in a correct segmentation
in very few iterations. Sampled points on the bone
boundary are easily stabilized, since their energy tran-
sitions are scaled down by the exponential. Sampled
points falling in the background are then more eas-
ily moved to the boundary, as the search depth is
increased to reach higher contrasted edges.

4 Adaptive Diffusion Algorithm

4.1 Failings and Extensions of the Depth-Adapting
Algorithm

Contours obtained with the algorithm presented in
section 3 are usually comparable in precision and
quality to other snakes (Kass et al. 1987), balloons

(Cohen 1991) or model-driven detectors (Fua &
Leclerc 1990), although it is difficult to substantiate
such an affirmation. One critical element in our ap-
proach is the choice of the initial depth and discretiza-
tion scales. Also, a snake can be used to fill-in missing
data from the edge-map, or even occluded contours
from 3D-objects, through its internal energy. Our
method does not have this feature. More importantly,
it usually, fails in cases when too many object bound-
aries are present (experiments not presented), because
each local part of the curve sticks to its own optimum,
with very little global interaction between different
sampling points, except in the spline fitting step.

This section introduces a different algorithm, based
on a diffusion method, rather than a purely local
scale-adapting method. More precisely, we show how
the framework that we have established enables us to
control some sort of consistency between locally op-
timized neighborhoods M (s) + 7(s)N(s) along the
curve parameter s, so that alien boundary parts can
be dismissed while consistent parts are inforced. This
is intended as a solution to some of the initialization
problems, as well as an interesting methodological
shift from a purely local scheme, to a more global
approach. While snakes and most other active mod-
els have used internal energy to provide global con-
trol, we choose to propagate the external energy, in a
sense that will be made clear later.
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4.2 A Diffusion Heuristic

The depth-adapting algorithm that we have presented
and illustrated in our previous sections can be de-
scribed as a set of automata, placed at regular inter-
vals along the contour model, which detect possible
object boundaries in a given direction, and move to
those anticipated boundaries. Those moves determine
the global deformation of the contour model. Each
move is based on the Ward distance between the au-
tomaton and its local estimates of intensities or colors
inside and outside the contour curve. We have made
no attempt so far toward a cooperation between ad-
Jjacent automata, and this of course results in a rather
poor modeling power, since the global behaviour of
our contour model only depends on (1) the nearest
edge element to each automaton in the direction of
its normal, and (2) the shape of the contour curve,
because of the spline-fitting step which tends to pull
its points towards its centers of curvatures. Without
an intuition of what object shapes should be, this does
not provide a robust detection method, except in re-
gions where only one object is present.

In order to obtain a more satisfying model, es-
pecially in cases where several objects are present
around the initial contour model, we are faced with
the alternative, either to allow multiple contour mod-
els, i.e. deformable models consisting of several
closed contours (one for each object), or to enhance
a single contour model, so that it can discriminate
between different object boundaries, and converge
toward a single object. We will not discuss further
the first approach, because it seems difficult to re-
strict it to the simpler cases of contour models having
disjoint interiors, without introducing nested struc-
tures (Koenderink & van Doorn 1979) or overlapping
contours (Nitzberg & Mumford 1990). In both those
cases, contour models become much more complex.
In the second approach, we only need to enforce new
constraints on the contour model, e.g. impose that
the regions bounded by the contour curve be of ho-
mogeneous intensity or color, at least in the neigh-
borhood of the contour model. This will cause the
contour model to favour consistent boundaries, and
selectively converge towards a single object. We now
have to find an efficient way of enforcing such con-
straints.

This will be easier to illustrate in terms of a de-
cision network. Instead of a set of independent au-
tomata, we now want a network of such automata, so

that each one can base its dynamics on estimates of
intensities or colors provided by its nearest neighbors
as well. As an example, Fig. 13 shows how local es-
timates (/});, and (I),, can be propagated along the
contour curve, and new estimated values (/*);, and
{(I*)ous can be formed from this mechanism. Since
each automaton computes its own estimates, it is a
simple matter to connect them so that they share those
values. In this section of the paper, we will show how
such a simple diffusion mechanism can be used to en-
hance the modeling power of our anticipating snake
model.

In order to compute the second-order estimates
(I*)i, and (I*),,,, we use combinations of the first-
order estimated image intensities {/);, and {I),,,, typ-
ically using a one-dimensional gaussian weight func-
tion g(;j) as shown in Fig. 13 and Fig. 14

L

(%), = YREGHIY

Jj==L

and 3
Vo = D 18Dt (29)

j==L

In (29), indices i and j are in the range of the discrete
arc length s across C. This yields a representation of
the neighborhood structure extended in width as two
layers of inter-connected cells, as depicted in Fig. 14
below, while retaining the local decision structure de-
scribed above. The input cells are image pixel values,
extracted in the estimated normal direction N (s). The
first layer of cells then computes local estimates of the
image values in half-neighborhoods, while the second
layer averages those values along the curve parame-
ter. Finally, output cells perform nonlinear transforms
and local comparisons to determine the directions of
deformation, much in the same way as before.

4.3 Adaptive Diffusion

With this new definition for our local neighborhood
structure, we have introduced a new parameter L,
which controls the width of the propagation process,
Le. typically the number of inter-connected points on
the contour curve, or more intuitively, the width of
the second-order neighborhood structure itself. Just
as in our previous sections, we need to decide for a
control strategy for this new parameter. This will be
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Fig. 13. Extending image neighborhood width. The simultaneous diffusion of intensity on both sides of the contour extends neighborhoods

in width.
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Fig. 14. Interconnection of neighborhood structures. Local color
values are weighted sums of the estimated colors for each neigh-
borhood.

based on the following experimental observations:

e substituting {/*);, and {/*),, to the original val-
ues in equations (23) and (25) improves the
convergence qualities of the anticipating snakes
algorithm around object boundaries (where first-
encountered boundaries act as seeds for width
propagation of the deformations),

e away from object boundaries, extending the width
of image neighborhoods yields confusions and
unpredictable results, mainly because the differ-

ences between inside and outside neighborhoods
are small and obscured by random, tangent het-
erogeneities.

We thus have to introduce a more adaptive prop-
agation scheme, so that we can use the seed val-
ues at object boundaries to extend in the width di-
mension, while ignoring this dimension altogether
when no such information is available. Such adaptive
treatments are reminiscent of biologically motivated
computational models, such as retinex theory (Land
1977) or boundary contour—feature contour interac-
tions (Grossberg 1987).

The retinex scheme computes perceived lightness
or color using path integrals away from boundaries—
a scheme later shown to be equivalent to a diffusion
equation with boundary conditions (Blake & Brelstaff
1987). This original idea was recently re-discovered
and extended as anisotropic diffusion i.e. diffusion
of image intensity values, with coefficients depend-
ing on local image gradients—a scheme which al-
lows filling-in to take place away from object bound-
aries, which act as diffusion barriers. It should be
noted that our own extending neighborhood structures
must follow the same kind of rule, but in a differ-
ent perspective, since all unidentified neighborhoods
should progressively be filled-in by image values dif-
fusing from distinct object and background seed half-
neighborhoods (the contour curve itself acting as a
diffusion barrier).

Interaction between extending neighborhood struc-
tures (allowing image intensities to fill-in) and op-
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timizing contour curves (which extend and main-
tain optimal local contrasts) can best be described
in the light of the neural theory of interacting fea-
tures and boundaries, as defined in Grossberg (1987).
S. Grossberg’s model of visual perception introduces
two competing forces (completion of boundaries and
featural filling-in) which are both necessary and suf-
ficient to explain, in his view, most pre-attentive ob-
Ject perception data. Feature contours are generated
by orientation-insensitive, direction-of-contrast sensi-
tive cells, while boundary contours are detected by
direction-of-contrast insensitive, orientation-sensitive
cells.

This is an important distinction, which we are
going to use a lot in this section. The process of com-
puting a Ward distance along the normal to the con-
tour curve, as in our previous section, is orientation-
sensitive, but not sensitive to direction-of-contrast,
Le. it responses to all discontinuities tangent to the
contour curve, regardless of the absolute intensities
or colors inside and outside the contour. It would be
useful to devise direction-of-contrast sensitive detec-
tors as well, in order to guide the deformable contour
towards a continuous boundary, i.e. with a constant
or slowly varying direction-of-contrast. Of course,
this is difficult, unless we are given the object and
background colors, or we can anticipate those colors,
based on larger, extended neighborhoods.

In order to achieve this goal in the framework
of our anticipating snake algorithm, we propose to
use an intensity or color diffusion scheme with non-
constant coefficients, each coefficient A(s) at arc-
length s being a monotonous increasing function of
the image contrast along the normal N (s) at s. This is
a quite different assumption compared to anisotropic
diffusion, because the diffusion along our curve pa-
rameter s is controlled by the contrast in the orthog-
onal direction ¢. Therefore, the more contrast we find
between the inside and outside colors at s, the more
we diffuse those colors. When the diffused colors are
used by each automaton to compute its motion, we get
a process which has become sensitive in the direction-
of-contrast. For highly contrasted points, this does not
change the computation of energy and forces much,
and those points will still maximize their own lo-
cal contrast, regardless of direction-of-contrast. On
the other hand, for lower contrast points, local color
values are outweighted by the diffused values from
highly contrasted points, which impose a given di-
rection of contrast. Therefore those points will maxi-

mize their Ward distance to the diffused colors “from
within” and “from without,” as if we had set the
functions object() and background() in equation (1)
for those points, or equivalently the intensity or color
charateristics of regions R;, and R,,, in equation (19).
This clearly results in a direction-of-contrast process
for those points.

Drawing upon this basic idea, we therefore have
implemented a simple diffusion process with a dif-
fusion coefficient h(s) which is a function of arc
length. This consists of the same two-layer structure
as Fig. 14, but with an additional term h(s). We de-
fer the precise definition of /i(s) to section 4.5 and
simply introduce it here with the following diffusion
equation:

s e S N(B0)
+ ) g(Dhis; (D = (1))

==L

The interpretation of /(s) at s = i + j in this equation
is that of a local contrast measure at point M(s). Us-
ing h(s) results in a selective diffusion from highly
contrasted areas to undifferentiated regions, as in
Fig. 15. More precisely, equation (30) results from
the following line of reasoning: (I*)' is expected to
take values ranging between the local depth value (1)
and the strrounding value /! :

surr*

i 8RN
ity gjhiy

(3D

Surr

Therefore we have (I*)" = (1—H)(I)'+HI' . This
simplifies to equation (30) if H is chosen to be the
averaged contrast Zj‘z_L 8(;) (4 ;) around M;. Sub-
stituting (/*)" from equation (30) into the anticipat-
ing snake algorithm, and increasing the neighborhood
width L at every iteration, a very efficient and sta-
ble scheme was obtained, as illustrated in Fig. 16 and
Fig. 17. The critical—and somehow more technical—
point in this version of the algorithm lies in the esti-
mation of the /(s) coefficients—which play a similar
role here as the line-process energies in Geman et al.
(1990).
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Fig. 15. Diffusion coefficient influence. Diffusion coefficients are related to image contrast across the contour curve. This has the effect of
diffusing contrasted colors into undifferentiated regions.

Fig. 16. Application of diffusion algorithm to real-scene image.
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Fig. 17. Steps in diffusion algorithm and object tracking application.

4.4 Adaptive Diffusion Algorithm

In order to illustrate the use of our diffusion heuristic,
we have implemented the following extension of our
anticipating snakes algorithm.

[1] Starting from an initial contour curve, we per-
form a first series of iterations following the depth
procedure of our previous section, until a limit
depth value P is obtained.

[2] We use variances from all half-neighborhoods to
estimate the contrasts /(s) and build the two layers
of neighborhoods described above.

[3] We compute fusion forces as in equation (15),
using the second layer outputs (I*)' for all neigh-
borhoods, and apply the depth deformation rules
from M(s) to M(s) + t(s)N(s).

[4] We increment L and iterate [2] and [3], until an
equilibrium is reached.

It should be noted that, since expression (30)
acts as a smoothing, regularizing term, no explicit
stopping criterion is needed (contrary to the depth-
adapting algorithm). In fact, it is possible Io'/re[y (as
in the original snakes approach) on a much simpler
rule, i.e. we end the process when no more defor-
mations occur. Figure 16 presents an example of ini-
tial and stabilized contour curves in a color image
(shown here in grey levels). The Ward distance is
derived from a visual metric in the vector-space of
color triplets. All objects have been optimized sep-

arately. The contours shown are sampled every five
pixels. The depth parameter was varied from 10 to
20 pixels in the first ten iterations. Then the width
parameter was increased from 5 to 15 points in the
last ten iterations (i.e. every sampled point received
information from up to 30 neighbors). The displayed
results use as many as 80 to 100 sampling points here.
It should be noted that the final scale is large enough
for different objects to overlap, meaning that we re-
ally obtain a solution which is an optimum among all
possible present object boundaries. Figure 17 shows
further interesting application results, in the case of
a sequence of images. The images in the sequence
have been chosen so that the average deplacement
corresponds to the depth parameter used, of approxi-
mately 20 pixels. Again, this shows a good modeling
power, discriminating easily between object bound-
aries and the surrounding texture. Intermediate states
of the contour model are shown in those three images,
illustrating only the adaptive-diffusion part of the al-
gorithm (Fig. 17). Except for the first frame, where we
have provided an initial curve manually, contours ob-
tained in a given frame were used directly to initialize
the next frame (although no real-time implementation
has been attempted).

4.5 Computing the Diffusion Coefficients

We cannot use the Ward distance in order to compute
the diffusion coefficients, because D(/|, I,) has the
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dimension of a square norm of image values and A(s)
must be a dimensionless coefficient in [0,1]. Non-
linear transforms such as (27) and (28) result in poor
numerical behaviour when averaged by the gaussian
function g;. Our experience here is that better contrast
estimates can in fact be obtained using a statistical test
for identical variances in the first layer of the neigh-
borhood structure (Fig. 4). This follows a theoretical
suggestion by Leclerc & Zucker (1987).

Letting V) be the total variance in the complete
neighborhood M(s) + tN(s) and V> be the sum of
separately estimated variances inside and outside the
contour curve at point M(s), we test the ratio -..";‘;,
which we assume to follow an incomplete S-function
(Press et al. 1988). The result of this test is the proba-
bility p(s) of the observed ratio, under the hypothesis
that V; and V, were drawn from a homogeneous pop-
ulation. The local contrast i (s) can thus be estimated
as 1 —p(s). The test Fisher-Snedecor has already been
used to study the local structure of discontinuities and
detect edges (Leclerc & Zucker 1987) and it proves
both consistent and reasonably efficient in our case
as well. It extends naturally to more complex image
cases than illustrated here, e.g. color or multi-spectral
imagery (Ronfard 1991).

5 Results and Discussion

5.1 Secale Changes: Comparison of Depth-Adapting
and Diffusion Algorithms

A remarkable feature of the two algorithms presented
here is their capacity to change scales during opti-
mization. Our treatment of scale changes in depth
closely follows Leclerc & Zucker (1987) but in a
more favourable context, because of error-correcting
iterations and regularization. As a consequence, a
more ambitious treatment of scale changes was pos-
sible, as captured by our width extending scheme.
However, extensions in depth or in width both have
merits and failings, which will now be illustrated and
discussed.

Extending in depth has been illustrated in Fig. 1
and Fig. 8. The intuitive nature of the extension pro-
cess is that all pixels in a neighborhood of the con-
tour curve interact with their projections on the curve,
the forces being repulsive, proportional to the simi-
larity of pixel values on and around the curve, and
limited in range to the depth parameter P (Fig. 8)

All such forces result in a contour-image interaction
which drives the optimization process throughout.

This scheme can be very successful (e.g. Fig. 11)
as long as the expected boundaries are absolute con-
trast maxima even at a reasonably large scale P.
When this is not the case, our extending scheme will
favour higher contrasts in the distance (within P) and
lose track of real boundaries. Controlling this situa-
tion has proved extremely difficult in the absence of
a more global information. On the other hand, cases
that can be correctly modeled by depth neighborhoods
are optimized without oscillations, in a near-optimal
number of steps (typically less than the Haussdorf
distance between initial curve and solution). Further-
more, the resulting curve can be refined to quasi pixel-
size resolution (Fig. 11 shows final curve sampled
every 3 pixels).

Thus, our depth-adapting strategy is best used
when image contrast is high and varies smoothly
along the anticipated boundary. Otherwise, smooth-
ing image values around optimizing contour is nec-
essary. Adaptive diffusion provides important clues
on how to solve those cases. The process has been
represented in Fig. 13 as distributed forces acting on
the contour curve from neighborhood pixels on the
curve.

The diffusion process that we use to compute local
pixel colors presents major advantages over both tra-
ditional snake methods and our local depth-adapting
algorithm, when an overall direction of contrast is
perceptible, because it is able to correct itself locally,
using neighborhood information without assumptions
on the geometry of expected object boundary (as in
Fig. 16 and Fig. 17). On the other hand, it is more
difficult to control, and not as precise as the simpler
depth-adapting algorithm, because it changes image
values and therefore leads to smoother contour solu-
tions than the real image boundaries. An implemen-
tation using more elaborate neighborhood structures
(such as a triangulation of the image) would be very
useful for further study of the adaptive diffusion con-
cept.

3.2 Merits and Failings of the Anticipating Snakes
Method

The framework presented in this paper addresses only
the case of feature contours (step-edges), and cannot
easily be made to recognize “roof-edges” or bound-
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aries between objects of similar colors. In the case of
step-edges, our diffusion algorithm retains most of the
available image contrast information, while allowing
non-stationnarity (as opposed to pure region segmen-
tation based on the same energy function). The use
of an energy measure derived from local comparisons
of quadratic error-of-fit functions was borrowed from
split-and-merge methods, for which it is well known
that smooth, regular contours are usually difficult to
obtain. Our anticipating snakes approach could pro-
vide a criterion for those cases, making contour ex-
traction much more reliable, while retaining the ro-
bustness qualities of region analysis. It also supports
scale changes more easily than other related schemes,
which is an important factor for stability of our re-
sults.

Figures 11 and 12 present results obtained with the
depth algorithm, on tomography scan and microscopy
images. Figure 16 shows results of the diffusion algo-
rithm on a fairly complex video image. An application
of the diffusion algorithm to object tracking in an im-
age sequence is shown in (Fig. 17). In simpler cases
such as Fig. 11 or Fig. 12, convergence is obtained in
ten to fifteen iterations, with an initial depth of about
five pixels, and the algorithm runs in time linear with
the number of sampled points. If the diffusion heuris-
tic is used in those images, the number of iterations
is reduced, but the running time increases because
of the more drastic computations there. However, all
examples shown were obtained in times compatible
with interactive use (typically under 2 seconds on a
12 MHz microcomputer for 30 sampled points).

The combination of contour-oriented control struc-
tures and region-oriented energy measures is power-
ful, yet many problems will remain unsolved as long
as contours are optimized one at a time. There are
cases when our anticipating snakes split into sep-
arate curves, and it would be interesting to pro-
ceed with such twin processes (as a matter of fact,
such situations are detected, and corrected by sim-
ply deleting all loops but the largest one). Multiple-
contour optimization could also prove valuable in or-
der to generate initial curves at different positions in
the image—sharing neighborhood values when nec-
essary, thus cooperating into a global segmentation
procedure such as Geman et al. (1990), but with an
explicit contour shape representation, as in Mumford
& Shaw (1985; 1989).

Other difficult issues in the approach that we
present here include the choice of an optimal sam-

pling rate, efficient control of the diffusion heuris-
tic after several iterations, and the trade-off be-
tween local depth-adapting and diffusion strategies
in the course of optimization. Such issues should
be discussed in the light of more specific, domain-
dependent image analysis application of the method.

6 Conclusion

This paper was motivated by the need to explore vari-
ational conditions and algorithms resting on local re-
gion analysis, instead of pre-processed edge maps,
to handle cases when such maps are not available
or too costly. Based on such local region criteria,
we have presented a coherent treatment of image-
contour forces and variations, as well as strategies
for application in a practical active contour system,
which compares well with other existing systems, es-
pecially in the case of over-segmented images. This
is remarkable since we essentially took a very sim-
plistic approach to optimization, control and conver-
gence issues. We argue that it is due to the fact that
the region-based energy used here is a better repre-
sentation for optimal shapes than are image gradi-
ents in those cases. Our energy definitions have been
presented with statistical and perceptual interpreta-
tions, and can be suggested—along with their varia-
tional procedures and heuristics—to enforce explicit
shape representations in other areas of image analy-
sis i.e. simulated annealing image segmentation and
retinex/diffusion schemes.

In the more specific domain of active contour mod-
els, our first contribution has been to introduce a gen-
eral formulation for region-based models, using local
error-of-fit functions to build an energy criterium suit-
able for optimization. This formulation has been illus-
trated using piece-wise constant image models only,
and should benefit from higher-order models when
available. Our second contribution has been to make
use of adaptive neighborhood structures and diffusion
processes, in order to obtain a more robust active con-
tour modeling scheme in the case of very busy images
with many objects. The same heuristics could easily
be transposed to the case of edge-based contour mod-
els as well, hopefully with the same benefits.

This work was performed while the author was
a research assistant with Ecole des Mines de Paris,
as well as being hosted by Laboratoire Image, Tele-
com Paris. The author would like to acknowledge the
help and support of J.M. Monget, M. Albuisson and
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L. Wald, at Ecole des Mines, H. Maitre, F. Schmidt
and M. Sigelle at Telecom, as well as valuable criti-
cal examination and discussion on earlier versions of
this work by Ph. Cinquin.
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Appendix A Variational Principles and Equations

We assume that the exact energy expression is :

! aM ?*M 2
E=[ (&Il~a—ll'+ﬁll > H'—G“(MJ) ds
0 s ds-

and that it can be approximated by a sum of local
energy fields E =

=] k"

n 8M n 32M- n
E = 2 H) 1 2pes 2 M{
a;n—as I +;6“le||—~m_2 I ;G( )

All terms in this expression can be approximated by
finite differences:
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oM;

“8_:;‘”2 = X4l = X)* + Gipt — yi)?
3 M;

Il 5o 1P = Crigr — 2% + xi21)?

+ it = 291 + yic1)?
If we now differentiate, we obtain

aE u aG*?
= Z B,'J'Ij ——
=1

ax; dx;

and

oFE Z 3G?
ek (TR B;-y' 5
dy;i FZ, {aaoy;

in which the coefficients in B are simple sums of «
and 8. ;

If we assume E(M) to be a quadratic function,
we can write (using Euler formula for homogeneous

functions):

“ dF .\ dE
2B=) ——xi+ Z el

i=l

which easily develops into
1 aG? aG?
E=—-|'XBX ' X—+'YBY -' Y —
2[ ax i BYJ

Equation (7) in the paper is but a short-hand no-
tation for this latter expression, in which we recog-
nize potential energy terms ‘X BX +' Y BY as well
as artificial, quasi-static Gibbs function coefficients
X3¢ 4y,

When we use our region-based formalism, the lat-
ter, image-driven energy terms appear only as varia-
tions ’BX%%i +’5}’aa—c.f,: which are interpreted (more
meaningfully in our opinion) as the amount of dissi-
pated energy due to the image force vector VG2,



