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CPU – GPU HW Differences

● CPU

● Most die area used for memory cache

● Relatively few transistors for ALUs

● GPU

● Most die area used for ALUs

● Relatively small caches



  

CPU – GPU HW Differences

● Situation is slowly changing
● Many-core CPUs
● More caches on GPU die



  

CPU – GPU Differences

● What does that mean for SW?

● CPU
● Hides memory latency via hierarchy of caches

– L1, L2 and L3 caches

● Little need for thread programming
– This is currently changing

● GPU
● Memory latency not hidden by large cache

– Only texture cache (roughly specialized L1 cache)

– Needs many (active) threads to hide latency!

● Only many-threads applications are useful
– Extra bonus of CUDA: threads can easily communicate (with limits)



  

A View on the G80 Architecture

● “Graphics mode:”
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A View on the G80 Architecture

● “CUDA mode:”
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CUDA Memory Types

Each thread can:
● Read/write per-thread registers

● Read/write per-thread local memory

● Read/write per-block shared memory

● Read/write per-grid global memory

● Read/only per-grid constant memory
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CUDA Memory Types & Uses

● Compute Capability 1.x
● Global memory (read and write)

– Slow & uncached

– Requires sequential & aligned 16 byte reads and writes to be fast (coalesced read/write)

● Texture memory (read only)

– Cache optimized for 2D spatial access pattern

● Constant memory

– This is where constants and kernel arguments are stored

– Slow, but with cache (8 kb)

● Shared memory (16 kb per MP)

– Fast, but take care of bank conflicts

– Exchange data between threads in a block

● Local memory (used for whatever does not fit into registers)

– Slow & uncached, but automatic coalesced reads and writes

● Registers (8192-16384 32-bit registers per MP)

– Fastest, scope is thread local



  

CUDA Memory Types & Uses

● Compute Capability 2.x
● Global memory (read and write)

– Slow, but now with cache

● Texture memory (read only)
– Cache optimized for 2D spatial access pattern

● Constant memory
– Slow, but with cache (8 kb)

– Special “LoaD Uniform” (LDU) instruction

● Shared memory (48kb per MP)
– Fast, but slightly different rules for bank conflicts now

● Local memory
– Slow, but now with cache

● Registers (32768 32-bit registers per MP)



  

CUDA Memory Limitations

● Global memory
● Best if 64 or 128 bytes (16 or 32 words) are read

– Parallel read/writes from threads in a block

– Sequential memory locations

– With appropriate alignment

– Called “coalesced” read/write

● Otherwise: a sequence of reads/writes

– >10x slower!

● Shared memory
● Fastest if

– All threads read from the same shared memory location

– All threads index a shared array via permutation
● E.g. linear reads/writes

● Otherwise: bank conflicts

– Not as bad as uncoalesced global memory reads/writes



  

CUDA Type Qualifiers

● Type Qualifier table

● Notes:

● _device__ not required for __local__,  __shared__, or  __constant__

● Automatic variables without any qualifier reside in a register

– Except arrays that reside in local memory

– Or not enough registers available for automatic variables

Variable declaration Memory Scope Lifetime

                            int LocalVar; register thread thread

                       int LocalArray[10]; local thread thread

[__device__] __shared__   int SharedVar; shared block block

__device__                int GlobalVar; global grid application

[__device__] __constant__ int ConstantVar; constant grid application



  

CUDA Type Qualifiers

● Type Qualifier table / performance

● Notes (for G80, somewhat simplified)

● Scalar vars reside in on-chip registers (fast)

● Shared vars resides in on-chip memory (fast)

● Local arrays and global variables reside in off-chip memory (slow)

● Constants reside in cached off-chip memory

Variable declaration Memory Performance 
penalty

                            int LocalVar; register 1x

                       int LocalArray[10]; local 100x

[__device__] __shared__   int SharedVar; shared 1x

__device__                int GlobalVar; global 100x

[__device__] __constant__ int ConstantVar; constant 1x



  

CUDA Type Qualifiers

● Type Qualifier table / performance

● 100.000s per-thread variables, but only accessed per thread

● 100s of shared variables, accessed by ~100 threads (a block)

● Global memory and constants are accessed by many threads

Variable declaration Instances Visibility

                            int LocalVar; 100.000s 1

                       int LocalArray[10]; 100.000s 1

[__device__] __shared__   int SharedVar; 100s 100s

__device__                int GlobalVar; 1 100.000s

[__device__] __constant__ int ConstantVar; 1 100.000s



  

CUDA Type Qualifiers

● Where is a variable accessed?

Can host access it?
(e.g. via cudaMemcpy)

Declared outside of 
any Function

Declared in the kernel

yes no
__global__
__constant__

register (automatic)
__shared__
__local__



  

Pointers & CUDA

● Pointers can only point to global memory
● Typical usage: as array argument to kernels

– __global__ void kernel(float * d_ptr);

● Alternative: explicit pointer assignment
– float * ptr = &globalVar;

● Use pointers only to access global memory
– Simple, regular read/write patterns
– No pointer chains (linked lists)
– No C wizard pointer magic

● But index magic is fine



  

A Common Programming Scenario 1

● Task:
● Load data from global memory
● Do thread-local computations
● Store result to global memory

● Solution (statements in kernel)
● Load data to registers (coalesced)

– float a = d_ptr[blockIdx.x*blockDim.x + threadIdx.x];

● Do computation with registers
– float res = f(a);

● Store back result (coalesced)
– d_ptr[blockIdx.x*blockDim.x + threadIdx.x] = res;



  

A Common Programming Scenario 1

● Full kernel code

__global__ void kernel(float * d_ptr)
{
   // Coalesced read if blockDim.x is a multiple of 16
   float a = d_ptr[blockIdx.x*blockDim.x + threadIdx.x];

   float res = a*a;

   // Coalesced write if blockDim.x is a multiple of 16
   d_ptr[blockIdx.x*blockDim.x + threadIdx.x] = res;
}



  

A Common Programming Scenario 2

● Task:
● Load data from global memory

● Do block-local computations

● Store result to global memory

● Solution (statements in kernel)
● Load data to shared memory (coalesced)

– __shared__ float a_sh[BLOCK_SIZE]; // blockDim.x == BLOCK_SIZE

– a_sh[threadIdx.x] = d_ptr[blockIdx.x*blockDim.x + threadIdx.x];

– __syncthreads(); // !!!

● Do computation

– float res = f(a_sh[threadIdx.x], a_sh[threadIdx.x+1]);

● Store back result (coalesced)

– d_ptr[blockIdx.x*blockDim.x + threadIdx.x] = res;



  

A Common Programming Scenario 2

● Full kernel code

__global__ void kernel(float * d_ptr)
{
   // Note: BLOCK_SIZE == blockDim.x
   int tx = threadIdx.x, bx = blockIdx.x;

   __shared__ float a_sh[BLOCK_SIZE];
   a_sh[tx] = d_ptr[bx*blockDim.x + tx];
   __syncthreads();

   // Ignore out-of-bounds access for now
   float res = a_sh[tx+1] – a_sh[tx];
   d_ptr[bx*blockDim.x + tx] = res;
}



  

General CUDA Scenario

● Partition data into subsets fitting into shared memory

● Copy constants to __constant__ variables
● But not the input of the problem!
● Limited size of constant memory and its cache

● One thread block per subset
● Load data from global memory to __shared__ memory

– Exploit coalescing

● Perform computation on the subset
– Exploit communication between threads in a block

● Not always possible
● Use __shared__ variables, pay attention to race conditions!

● Write result (in register or __shared__ variable) to global memory
– Exploit coalescing



  

Communication via Shared Mem.

● Little question:

__global__ race_condition()
{
   __shared__ int shared_var = threadIdx.x;
   // What is the value of shared_var here???
}



  

Communication via Shared Mem.

● Answer:
● Value of shared_var is undefined
● This is a race condition

– Multiple threads writing to one variable w/o explicit 
synchronization

– Variable will have arbitrary (i.e. undefined) value
● Need for synchronization/barriers

– __syncthreads()
– Atomic operations



  

Communication via Shared Mem.

● __syncthreads()
● Point of synchronization for all threads in a block
● Not always necessary

– Half-warps are lock-stepped

● Common usage: make sure data is ready

__global__ void kernel(float * d_src)
{
   __shared__ float a_sh[BLOCK_SIZE];
   a_sh[threadIdx.x] = d_src[threadIdx.x];
   __syncthreads();
   // a_sh is now correctly filled by all
   // threads in the block
}



  

Communication via Shared Mem.

● Atomic operations
● atomicAdd(), atomicSub(), atomicExch(), 

atomicMax(), …

● Example

__global__ void sum(float * src, float * dst)
{
   atomicAdd(dst, src[threadIdx.x]);
}



  

Communication via Shared Mem.

● But: atomic operations are not cheap

● Serialized write access to a memory cell

● Better solution:
● Partial sums within thread block

– atomicAdd() on a __shared__ variable

● Global sum
– atomicAdd() on global memory



  

Communication via Shared Mem.

● Better version of sum()

__global__ void sum(float * src, float * dst)
{
   int pos = blockDim.x*blockIdx.x + threadIdx.x;

   __shared__ float partial_sum;
   if (threadIdx.x == 0) partial_sum = 0.0f;
   __syncthreads();

   atomicAdd(&partial_sum, src[pos]);

   if (threadIdx.x == 0) atomicAdd(dst, partial_sum)
}



  

Communication via Shared Mem.

● General guidelines:
● Do not synchronize or serialize if not necessary
● Use __syncthreads() to to wait until __shared__ data is 

filled
● Data access pattern is regular or predicable

→ __syncthreads()
● Data access pattern is sparse or not predictable

→ atomic operations
● Atomic operations are much faster for shared variables 

than for global ones
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