

CUDA Memory Architecture

GPGPU class
Week 4

CPU – GPU HW Differences

● CPU

● Most die area used for memory cache

● Relatively few transistors for ALUs

● GPU

● Most die area used for ALUs

● Relatively small caches

CPU – GPU HW Differences

● Situation is slowly changing
● Many-core CPUs
● More caches on GPU die

CPU – GPU Differences

● What does that mean for SW?

● CPU
● Hides memory latency via hierarchy of caches

– L1, L2 and L3 caches

● Little need for thread programming
– This is currently changing

● GPU
● Memory latency not hidden by large cache

– Only texture cache (roughly specialized L1 cache)

– Needs many (active) threads to hide latency!

● Only many-threads applications are useful
– Extra bonus of CUDA: threads can easily communicate (with limits)

A View on the G80 Architecture

● “Graphics mode:”

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

A View on the G80 Architecture

● “CUDA mode:”

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

CUDA Memory Types

Each thread can:
● Read/write per-thread registers

● Read/write per-thread local memory

● Read/write per-block shared memory

● Read/write per-grid global memory

● Read/only per-grid constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

CUDA Memory Types & Uses

● Compute Capability 1.x
● Global memory (read and write)

– Slow & uncached

– Requires sequential & aligned 16 byte reads and writes to be fast (coalesced read/write)

● Texture memory (read only)

– Cache optimized for 2D spatial access pattern

● Constant memory

– This is where constants and kernel arguments are stored

– Slow, but with cache (8 kb)

● Shared memory (16 kb per MP)

– Fast, but take care of bank conflicts

– Exchange data between threads in a block

● Local memory (used for whatever does not fit into registers)

– Slow & uncached, but automatic coalesced reads and writes

● Registers (8192-16384 32-bit registers per MP)

– Fastest, scope is thread local

CUDA Memory Types & Uses

● Compute Capability 2.x
● Global memory (read and write)

– Slow, but now with cache

● Texture memory (read only)
– Cache optimized for 2D spatial access pattern

● Constant memory
– Slow, but with cache (8 kb)

– Special “LoaD Uniform” (LDU) instruction

● Shared memory (48kb per MP)
– Fast, but slightly different rules for bank conflicts now

● Local memory
– Slow, but now with cache

● Registers (32768 32-bit registers per MP)

CUDA Memory Limitations

● Global memory
● Best if 64 or 128 bytes (16 or 32 words) are read

– Parallel read/writes from threads in a block

– Sequential memory locations

– With appropriate alignment

– Called “coalesced” read/write

● Otherwise: a sequence of reads/writes

– >10x slower!

● Shared memory
● Fastest if

– All threads read from the same shared memory location

– All threads index a shared array via permutation
● E.g. linear reads/writes

● Otherwise: bank conflicts

– Not as bad as uncoalesced global memory reads/writes

CUDA Type Qualifiers

● Type Qualifier table

● Notes:

● _device__ not required for __local__, __shared__, or __constant__

● Automatic variables without any qualifier reside in a register

– Except arrays that reside in local memory

– Or not enough registers available for automatic variables

Variable declaration Memory Scope Lifetime

 int LocalVar; register thread thread

 int LocalArray[10]; local thread thread

[__device__] __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

[__device__] __constant__ int ConstantVar; constant grid application

CUDA Type Qualifiers

● Type Qualifier table / performance

● Notes (for G80, somewhat simplified)

● Scalar vars reside in on-chip registers (fast)

● Shared vars resides in on-chip memory (fast)

● Local arrays and global variables reside in off-chip memory (slow)

● Constants reside in cached off-chip memory

Variable declaration Memory Performance
penalty

 int LocalVar; register 1x

 int LocalArray[10]; local 100x

[__device__] __shared__ int SharedVar; shared 1x

__device__ int GlobalVar; global 100x

[__device__] __constant__ int ConstantVar; constant 1x

CUDA Type Qualifiers

● Type Qualifier table / performance

● 100.000s per-thread variables, but only accessed per thread

● 100s of shared variables, accessed by ~100 threads (a block)

● Global memory and constants are accessed by many threads

Variable declaration Instances Visibility

 int LocalVar; 100.000s 1

 int LocalArray[10]; 100.000s 1

[__device__] __shared__ int SharedVar; 100s 100s

__device__ int GlobalVar; 1 100.000s

[__device__] __constant__ int ConstantVar; 1 100.000s

CUDA Type Qualifiers

● Where is a variable accessed?

Can host access it?
(e.g. via cudaMemcpy)

Declared outside of
any Function

Declared in the kernel

yes no
__global__
__constant__

register (automatic)
__shared__
__local__

Pointers & CUDA

● Pointers can only point to global memory
● Typical usage: as array argument to kernels

– __global__ void kernel(float * d_ptr);

● Alternative: explicit pointer assignment
– float * ptr = &globalVar;

● Use pointers only to access global memory
– Simple, regular read/write patterns
– No pointer chains (linked lists)
– No C wizard pointer magic

● But index magic is fine

A Common Programming Scenario 1

● Task:
● Load data from global memory
● Do thread-local computations
● Store result to global memory

● Solution (statements in kernel)
● Load data to registers (coalesced)

– float a = d_ptr[blockIdx.x*blockDim.x + threadIdx.x];

● Do computation with registers
– float res = f(a);

● Store back result (coalesced)
– d_ptr[blockIdx.x*blockDim.x + threadIdx.x] = res;

A Common Programming Scenario 1

● Full kernel code

__global__ void kernel(float * d_ptr)
{
 // Coalesced read if blockDim.x is a multiple of 16
 float a = d_ptr[blockIdx.x*blockDim.x + threadIdx.x];

 float res = a*a;

 // Coalesced write if blockDim.x is a multiple of 16
 d_ptr[blockIdx.x*blockDim.x + threadIdx.x] = res;
}

A Common Programming Scenario 2

● Task:
● Load data from global memory

● Do block-local computations

● Store result to global memory

● Solution (statements in kernel)
● Load data to shared memory (coalesced)

– __shared__ float a_sh[BLOCK_SIZE]; // blockDim.x == BLOCK_SIZE

– a_sh[threadIdx.x] = d_ptr[blockIdx.x*blockDim.x + threadIdx.x];

– __syncthreads(); // !!!

● Do computation

– float res = f(a_sh[threadIdx.x], a_sh[threadIdx.x+1]);

● Store back result (coalesced)

– d_ptr[blockIdx.x*blockDim.x + threadIdx.x] = res;

A Common Programming Scenario 2

● Full kernel code

__global__ void kernel(float * d_ptr)
{
 // Note: BLOCK_SIZE == blockDim.x
 int tx = threadIdx.x, bx = blockIdx.x;

 __shared__ float a_sh[BLOCK_SIZE];
 a_sh[tx] = d_ptr[bx*blockDim.x + tx];
 __syncthreads();

 // Ignore out-of-bounds access for now
 float res = a_sh[tx+1] – a_sh[tx];
 d_ptr[bx*blockDim.x + tx] = res;
}

General CUDA Scenario

● Partition data into subsets fitting into shared memory

● Copy constants to __constant__ variables
● But not the input of the problem!
● Limited size of constant memory and its cache

● One thread block per subset
● Load data from global memory to __shared__ memory

– Exploit coalescing

● Perform computation on the subset
– Exploit communication between threads in a block

● Not always possible
● Use __shared__ variables, pay attention to race conditions!

● Write result (in register or __shared__ variable) to global memory
– Exploit coalescing

Communication via Shared Mem.

● Little question:

__global__ race_condition()
{
 __shared__ int shared_var = threadIdx.x;
 // What is the value of shared_var here???
}

Communication via Shared Mem.

● Answer:
● Value of shared_var is undefined
● This is a race condition

– Multiple threads writing to one variable w/o explicit
synchronization

– Variable will have arbitrary (i.e. undefined) value
● Need for synchronization/barriers

– __syncthreads()
– Atomic operations

Communication via Shared Mem.

● __syncthreads()
● Point of synchronization for all threads in a block
● Not always necessary

– Half-warps are lock-stepped

● Common usage: make sure data is ready

__global__ void kernel(float * d_src)
{
 __shared__ float a_sh[BLOCK_SIZE];
 a_sh[threadIdx.x] = d_src[threadIdx.x];
 __syncthreads();
 // a_sh is now correctly filled by all
 // threads in the block
}

Communication via Shared Mem.

● Atomic operations
● atomicAdd(), atomicSub(), atomicExch(),

atomicMax(), …

● Example

__global__ void sum(float * src, float * dst)
{
 atomicAdd(dst, src[threadIdx.x]);
}

Communication via Shared Mem.

● But: atomic operations are not cheap

● Serialized write access to a memory cell

● Better solution:
● Partial sums within thread block

– atomicAdd() on a __shared__ variable

● Global sum
– atomicAdd() on global memory

Communication via Shared Mem.

● Better version of sum()

__global__ void sum(float * src, float * dst)
{
 int pos = blockDim.x*blockIdx.x + threadIdx.x;

 __shared__ float partial_sum;
 if (threadIdx.x == 0) partial_sum = 0.0f;
 __syncthreads();

 atomicAdd(&partial_sum, src[pos]);

 if (threadIdx.x == 0) atomicAdd(dst, partial_sum)
}

Communication via Shared Mem.

● General guidelines:
● Do not synchronize or serialize if not necessary
● Use __syncthreads() to to wait until __shared__ data is

filled
● Data access pattern is regular or predicable

→ __syncthreads()
● Data access pattern is sparse or not predictable

→ atomic operations
● Atomic operations are much faster for shared variables

than for global ones

Acknowledgements

● UIUC parallel computing course
● http://courses.engr.illinois.edu/ece498/al/Syllabus.html

● Stanford GPU lecture
● http://code.google.com/p/stanford-cs193g-sp2010/

● General CUDA training resources
● http://developer.nvidia.com/object/cuda_training.html

http://courses.engr.illinois.edu/ece498/al/Syllabus.html
http://code.google.com/p/stanford-cs193g-sp2010/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

