
Abstract
Median filtering is a cornerstone of modern image processing
and is used extensively in smoothing and de-noising applications.
The fastest commercial implementations (e.g. in Adobe® Pho-
toshop® CS2) exhibit O(r) runtime in the radius of the filter,
which limits their usefulness in realtime or resolution-independent
contexts. We introduce a CPU-based, vectorizable O(log r) algo-
rithm for median filtering, to our knowledge the most efficient yet
developed. Our algorithm extends to images of any bit-depth, and
can also be adapted to perform bilateral filtering. On 8-bit data
our median filter outperforms Photoshop’s implementation by up
to a factor of fifty.

CR Categories: F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems – Sorting
and Searching; I.4.3 [Image Processing and Computer Vision]:
Enhancement – Filtering ; D.2.8 [Software Engineering]: Metrics
– Complexity Measures; E.1 [Data Structures]: Arrays

Keywords: median filtering, bilateral filtering, rank-order filter-
ing, sorting, image processing, algorithms, histograms, data struc-
tures, complexity, SIMD, vector processing

1 Introduction

1.1 Median Filtering

The median filter was introduced by Tukey [1977], and over the
years tremendous effort has gone into its optimization and refine-
ment. It provides a mechanism for reducing image noise, while
preserving edges more effectively than a linear smoothing filter.
Many common image-processing techniques such as rank-order
and morphological processing are variations on the basic median
algorithm, and the filter can be used as a steppingstone to more
sophisticated effects. However, due to existing algorithms’ fun-
damental slowness, its practical use has typically been restricted
to small kernel sizes and/or low-resolution images.

Figure 1: 8-Bit Median Filter Performance

Adobe® Photoshop® CS2 is the de facto standard for high-
performance image processing, with a median filter that scales to
radius 100. This filter exhibits roughly O(r) runtime per pixel, a
constraint which significantly reduces its performance for large
filtering kernels. A variety of O(r) algorithms are well known (e.g.
Huang 1981), but it is not obvious that a faster algorithm should
exist. The median filter is not separable, nor is it linear, and there
is no iterative strategy for producing the final result, as there is
with e.g. Gaussian Blur [Heckbert 1986], or the Fast Fourier
Transform [Cooley et al. 1965]. A fast, high-radius implementa-
tion would be of considerable theoretical and practical value.

Gil et al. [1993] made significant progress with a tree-based
O(log2r) median-filtering algorithm, but its per-pixel branching
nature renders it ill-suited for deep-pipelined, vector-capable
modern processors. Other efforts have resorted to massive paral-
lelism on the presumption that a single processor is insufficient:
according to Wu et al. [2003], “...designing a parallel algorithm to
process [the median filter] is the only way to get a real-time re-
sponse.” Ranka et al. [1989] proposed a parallel algorithm with a
processor-time complexity of O(log4r), but this curve actually
scales worse than linear for r < 55 (= e4), the point at which a 1%
increase in radius corresponds to a 1% increase in computation.

Our algorithm overcomes all of these limitations and achieves
O(log r) runtime per pixel on 8-bit data, for both median and bi-
lateral filtering. It is fully vectorizable and uses just O(r) storage.
It also adapts as an O(log2r) algorithm to arbitrary-depth images,
on which it runs up to twenty times as fast as Photoshop’s 16-bit
Median filter. To our knowledge, the presented O(log r) algorithm
is the most efficient 2D median filter yet developed, and processes
8-bit data up to fifty times faster than Photoshop’s Median filter.

Fast Median and Bilateral Filtering

 Ben Weiss†

Shell & Slate Software Corp.

__

†ben@shellandslate.com

Figure 2: Median Filter Variations. Top row: original; sharpened
with Gaussian; sharpened with median (note fewer halo artifacts.)
Middle row: Filtered at 20th; 50th [median]; and 80th percentiles.
Bottom row: “High Pass” using median; bilateral smoothing filter;

logarithmic bilateral filter.

1.2 Bilateral Filtering

The Bilateral filter was introduced by Tomasi et al. [1998] as a
non-iterative means of smoothing images while retaining edge
detail. It involves a weighted convolution in which the weight for
each pixel depends not only on its distance from the center pixel,
but also its relative intensity. As described, the bilateral filter has
nominal O(r2) computational cost per pixel. Photoshop® CS2’s
16-bit Surface Blur filter reflects this O(r2) complexity, and be-
comes unusably slow for even moderate radii. On 8-bit data, Pho-
toshop’s Surface Blur exhibits a performance curve nearly identi-
cal to its 8-bit Median filter, suggesting that they share the same
core O(r) algorithm.

Durand et al. [2002] developed a much more efficient technique,
refined and accelerated by Paris et al. [2006]. Durand’s method
approximates the bilateral by filtering subsampled copies of the
image with discrete intensity kernels, and recombining the results
using linear interpolation. It has the paradoxical property of be-
coming faster as the radius increases (due to greater subsam-
pling), but also has some potential drawbacks. For one, it is not
translation-invariant: the exact output is dependent on the phase of
the subsampling grid. Also, the discretization may lead to a fur-
ther loss of precision, particularly on high-dynamic-range images
with narrow intensity-weighting functions.

Our bilateral filtering algorithm maintains high resolution in both
space and intensity, and is translation-invariant. It is based on a
box spatial kernel, which can be iterated to yield smooth spatial
falloff. It is derived from the same core algorithm as our fast
O(log r) median filter, and adapts to 16-bit and HDR data with
minimal loss of precision.

1.3 Structure

Our approach in this paper will be first to illustrate the conven-
tional O(r) median algorithm for 8-bit images, and analyze its
performance and limitations. Then we will show in steps how to
improve it; first by constant factors, then into O(√r) and O(∛r)
algorithms, and from there into an O(log r) algorithm. We will
show how our approach adapts to higher bit-depth data, such as
16-bit and HDR floating-point. Finally, we will show how the
algorithm can be adapted to perform bilateral filtering, and com-
pare it with previous methods.

2 The Basic O(r) Algorithm

Consider the case of applying a radius-r median filter to an 8-bit
image. Assume a source image that is larger than the destination
by r pixels on all sides, to sidestep edge-related concerns. (In
practice, we repeat edge pixels to fill undefined areas, and process
color images on a per-channel basis.) Because the median filter is
local, it can be applied to arbitrary-size images in tiles. As a con-
sequence, its total runtime scales linearly with image area: O(S2)
for an S-by-S image.

The fundamental property that concerns us here is runtime per
pixel, as a function of filter radius. This corresponds to the per-
formance a user will experience while adjusting the filter radius,
and is the primary differentiating characteristic between median-
filtering algorithms. For reference, a brute-force implementation
can calculate each output pixel in O(r2 log r) time, by sorting the
corresponding (2r + 1)2 -pixel input window and selecting the
median value as output.

On discrete data, a radix-sort can be used to reduce the sorting
complexity to O(r2) operations; this can be done for some
floating-point data as well [Terdiman 2000]. In the case of 8-bit
data, we use a 256-element histogram, H. Once the input values
are added to H, the median value lies in the first index for which
the sum of values to that index reaches 2r2 + 2r + 1. The median
index can be found by integrating the histogram from one end
until the appropriate sum is reached.

An improved algorithm was proposed by Huang [1981], based on
the observation that adjacent windows overlap to a considerable
extent. Huang’s algorithm makes use of this sequential overlap to
consolidate the redundant calculations, reducing the computa-
tional complexity to O(r). A modified version of Huang’s algo-
rithm is below:

r: radius of median filter. (shown above as r = 3.)
H: 256-element histogram.
I: input image, S + 2r pixels square.
O: output image [inset], S pixels square.

initialize H to I[0 .. 2r][0 .. 2r]. // yellow region
find median value m in H, write m to O[0][0].
 for row = 1 to S - 1:
 add values I[2r + row][0 .. 2r] to H.
 subtract values I[row - 1][0 .. 2r] from H.
 find median value m in H; write m to O[row][0].
 step sideways to next column (and process bottom to top, etc.).

Figure 3: Pseudocode for Huang’s O(r) Algorithm

Huang’s algorithm is a significant improvement over the brute-
force method. However, the window-sliding step dominates the
calculation with O(r) runtime per pixel, while the histogram-
scanning takes constant time per pixel. This suggests that we
should look for a way to make the window-sliding faster, even at
the expense of making the histogram-scanning slower.

Observe that as the window zigzags through the image, it passes
through each region several times, performing nearly the same
operations on each pass. (Picture mowing your lawn back and
forth, shifting sideways one centimeter each time.) This redun-
dancy is considerable, and mirrors the adjacent-window overlap
that led to Huang’s algorithm.

The difficulty is that these redundant calculations occur at widely
spaced time intervals in the computation; perhaps tens of thou-
sands of processor cycles apart, so they cannot be combined using
the same sequential logic that led to the O(r) technique. Yet,
eliminating these redundancies is the key to a dramatically faster
algorithm.

3 The O(log r) Algorithm

3.1 Synchronicity

The fundamental idea behind this paper, and the mechanism that
enables our fast algorithm, is the observation that if multiple col-
umns are processed at once, the aforementioned redundant calcu-
lations become sequential. This gives us the opportunity to con-
solidate them, resulting in huge increases in performance.

3.2 Distributive Histograms

A straightforward adaptation of Huang’s algorithm to process N
columns at once involves the maintenance of N histograms, one
per output column: H0 .. HN-1. This is essentially just a rearrange-
ment of operations; the runtime complexity is unchanged. Each
input pixel gets added to 2r + 1 histograms over the course of
filtering the image, leading to the O(r) runtime complexity.

Fortunately, the explicit maintenance of each histogram Hn is
unnecessary, due to the distributive property of histograms. This is
where our approach diverges from Huang’s algorithm. Histogram
distributivity means that for disjoint image regions A and B:

 HA∪B[v] ≡ HA[v] + HB[v] (1)

In other words, if an image window W is the union of two disjoint
regions A and B, then its histogram HW is equal to HA + HB. The
median element of W can then be found by scanning the implicit
histogram HW, splicing it together from HA and HB on the fly.
(This extends to signed linear combinations; HA ≡ HW - HB, etc.)

In the case of median-filtering N columns, our approach is to form
a set H* of partial histograms P0 .. PN-1 (whose elements may be
signed), such that each histogram H0 .. HN-1 is representable as the
sum of T partial histograms from H*. Figure 4 shows how a row
of pixels v0 .. v2r+8 is added to H*, for the case N = 9, T = 2.

Huang: H0 .. H8

H0[v0 .. v2r]++;
H1[v1 .. v2r+1]++;
H2[v2 .. v2r+2]++;
H3[v3 .. v2r+3]++;
H4[v4 .. v2r+4]++;
H5[v5 .. v2r+5]++;
H6[v6 .. v2r+6]++;
H7[v7 .. v2r+7]++;
H8[v8 .. v2r+8]++;

18r + 9 operations

Our Method: P0 .. P8 ⊆ H*

P0[v0..v3]++; P0[v2r+1..v2r+4]--;
P1[v1..v3]++; P1[v2r+2..v2r+4]--;
P2[v2..v3]++; P2[v2r+3..v2r+4]--;
P3[v3]++; P3[v2r+4]--;
P4[v4 v2r+4]++;
P5[v4]--; P5[v2r+5]++;
P6[v4..v5]--; P6[v2r+5..v2r+6]++;
P7[v4..v6]--; P7[v2r+5..v2r+7]++;
P8[v4..v7]--; P8[v2r+5..v2r+8]++;

2r + 41 operations

Mapping:

H0 ≡ P0 + P4

H1 ≡ P1 + P4

H2 ≡ P2 + P4

H3 ≡ P3 + P4

H4 ≡ P4

H5 ≡ P5 + P4

H6 ≡ P6 + P4

H7 ≡ P7 + P4

H8 ≡ P8 + P4

T = 2

Figure 4: Adding a row of pixels to H*, for the case N = 9, T = 2.
Each layer shows how the corresponding histogram Hn is formed
from partial histograms Pn in H*. The pseudocode shows how a

row of pixels v0 .. v2r+8 is added to H*. The “holes” represent pix-
els that are added to the central histogram P4 but subtracted from

partial histograms, canceling themselves out.

The histogram set H* is arranged like a tree, with a central histo-
gram (P4) representing the input window for the central column,
and the other partial histograms Pn representing the difference
between the central and adjacent windows. The sum of each par-
tial plus central histogram yields the full histogram for the corre-
sponding square input window. By widening the yellow central
region and fitting the partial histograms to its edges, the 9-column
technique can be adapted to perform median filtering of arbitrary
radius. The time spent modifying H* is still O(r), but with a much
lower constant than Huang’s algorithm. The median extraction
time from H* remains constant regardless of r.

The more fundamental improvement in efficiency comes when we
allow the number of columns N to vary with r, conceptually add-
ing more planes to Figure 4. For N output columns, the number of
modifications to H* per output pixel is (N2 + 4r + 1) / N. (The
graphic in Figure 4 show the case of N = 9, r = 4, requiring 98
adjustments to H* per row or about 11 per output pixel.) Solving
for N to minimize the number of adjustments gives N ≈ 2√r,
which yields O(√r) histogram modifications per pixel. Thus, the
complexity of the T = 2, variable-N adaptive algorithm is O(√r).

3.3 Three Tiers and Beyond

Figure 5: H* Histogram Layout for N = 63, T = 3.

Figure 5 shows a layout for processing sixty-three columns at
once. It is the three-tiered analogue of Figure 4, this time
“viewed” from the side. There is a single shared histogram P31
[yellow] corresponding to the central window; eight partial histo-
grams [orange] at seven-pixel intervals; and for each of these, six
small partial histograms [red] at unit intervals; sixty-three histo-
grams altogether. Each input pixel is added/subtracted to each
histogram intersecting its column. In this example, a 63-by-1
block of output is produced at each iteration. The mapping of Pn
to Hn becomes:

Hn = P31 + P7!n/7"+3 + Pn (2)

where the second and third terms are ignored if they match earlier
terms (e.g., H24 = P31 + P24.) The structure of H* is recursive; the
central yellow histogram forms a rough approximation to any
particular Hn; the orange partial histograms refine that approxima-
tion, and the red histograms provide the final correction to make
the sums exact. Once H* is initialized, the full histogram of each
of the 63 square input windows is expressible per Eq. 2 as the sum

of one red histogram (or none), one orange histogram (or none),
and the yellow central histogram. The illustrated case of N = 63, T
= 3, r = 31 requires ~18 histogram modifications per output pixel.
The median-extraction from H* takes constant time, as the three
partial histograms are spliced together on the fly.

For the general case of 3-tiered structures, processing N columns
at once and with tier radix √N, the number of histogram adjust-
ments per output pixel becomes √N + ((4r + 2) / N). For radius r,
solving for optimal N yields N ≈ 4r⅔, and the runtime of the three-
tiered adaptive algorithm is therefore O(∛r).

In practice, three tiers covers the realistic range of implementation
(into the hundreds), but our technique can be extended to arbitrary
T. In the limit, a radius-r median filter can be computed across N
= O(r) columns at once, using N histograms arranged into T =
O(log r) tiers of constant radix. For example, a radius one-million
median filter can be computed across N = 96 = 531,441 columns
at once, using 96 partial histograms arranged in seven tiers of
radix 9, occupying roughly 500 megabytes of storage. Sliding the
window from one row to the next requires O(log r) ≈ 114 histo-
gram modifications per output pixel. Extracting each median takes
O(log r) steps; in this case splicing up to seven partial histograms
together to construct each Hn, counterbalancing the O(log r) com-
plexity of writing to H*. Therefore, the overall computational cost
per pixel is O(log r). ☐

r: radius of median filter.
H*: Array of partial histograms, processing N columns.
I: input image, N + 2r pixels square.
O: output image, N pixels square.

for each row in [0 .. 2r]: // Initialize H*
 Add row, I[row][0 .. 2r + N - 1] to H*, as per Figure 4
for each output pixel in O[0][col]: // compute first N median values
 scan Hcol (implicit in H*) to the find the median m,
 write O[0][col] = m.
for row = 1 to N - 1: // step from top to bottom of image
 add new bottom row, I[row + 2r][0 .. 2r + N - 1], to H*.
 subtract old top row, I[row - 1][0 .. 2r + N - 1], from H*.
 find N new median values in H*; write to O[row][0 .. N - 1].

Figure 6: Pseudocode for O(log r) Algorithm

3.4 Implementation Notes

Scanning the histogram from index zero to find the median takes
about 128 steps on average. Huang [1981] suggested using each
output value as a “pivot” to find the next median value: as H is
scanned to find m, we keep track of the number of values v < m in
H. Then as we add and remove pixels from H, we keep a running
count of how many values satisfy v < m. This allows us to scan
the updated histogram starting from m, which is typically much
faster than starting from index zero.

Figure 7: Pivot Tracking. The middle image shows the approxi-
mation obtained using one pivot per sixteen columns to track the
smallest median values. H* is then scanned upwards from these
pivots (several columns at a time, vectorized) to yield the exact

median result, right.

This heuristic adapts to the O(log r) algorithm by using O(log r)
pivots across the N columns, with each pivot tracking the smallest
median value in its respective columns. This approach obtains
much of the benefit of the heuristic while preserving the O(log r)
complexity. Since the pivot tracking involves many consecutive
bytewise compares, it is ideally suited for vector optimization.

Finally, it is useful to interleave the partial histograms Pn in mem-
ory, so that multiple adjacent histograms can be modified simulta-
neously using vector loads and stores. This greatly accelerates the
reading and writing of H*.

4 Higher-Depth Median Filtering

4.1 Adapting the 8-bit Algorithm

16-bit and HDR images have already become mainstream, so it is
important that our median filter work with images of arbitrary bit-
depth. A direct extension of the 8-bit algorithm is problematic,
because the histograms must stretch to accommodate every possi-
ble value, growing exponentially with bit-depth. The algorithm
still remains O(log r), but storage considerations render it imprac-
tical for 16-bit images and impossible for floating-point images.

4.2 The Ordinal Transform

H* is reduced to a manageable size through a technique we call
the ordinal transform. This involves sorting the input image val-
ues, storing the sorted list, and replacing each cardinal value with
its ordinal equivalent. (Duplicate cardinal values map to consecu-
tive ordinal values.) The median filter is then applied to the ordi-
nal image, and the transform is inverted to restore the cardinal-
valued result. The ordinal transform operates on images of any
depth, in logarithmic or constant time per pixel.

In this operation, the nonlinearity of the median filter is crucial.
Any linear filter (e.g., Gaussian blur) would not be invariant under
the ordinal transform, but the median filter is! That is because
rank-order is preserved; the kth-smallest cardinal value maps to the
kth-smallest ordinal value. After the ordinal transform is applied,
the median filtering proceeds as in Section 3, this time using
single-bit histograms Pn (sufficient here because each ordinal
value is unique in the image), and the results are inverse-
transformed to yield the final filtered image.

Figure 8: The Ordinal Transform. Duplicate cardinal values (e.g.
94, 94, left) map to consecutive ordinal values (2 and 3, right).

Recall that the histogram elements in H* can go negative. At first
this appears problematic because the required range [-1, 0, 1]
doesn’t fit into a single bit. However, since each summed implicit
histogram value Hn[v] can only be either zero or one, only the
lowest bit from each partial histogram must participate in the
summation. Hence a single bit is sufficient for each element of Pn,
and the splicing accomplished through a bitwise XOR.

4.3 The Compound Histogram

For processing N columns in parallel, this approach still requires
the allocation and maintenance of N single-bit histograms. How-
ever, due to the uniqueness of values in the ordinal image, we can
take advantage of a much more efficient encoding.

Consider the full histogram obtained by splicing the nth set of
partial histograms in H* (consisting of the central histogram plus
one partial histogram from each tier), to yield the single-bit histo-
gram for the nth input window. Label this binary histogram Bn. By
definition, the single bit Bn[v] indicates whether the ordinal value
v lies in the input window n.

Now, for N <= min(2r, 128), instead of allocating N binary histo-
grams, we allocate a single 8-bit compound histogram Hc. As
rows of pixels v = I[row][col] are added, we adjust Hc as follows:

Hc[v] = {
0xFF - col, col < N - 1

0x80, N - 1 <= col <= 2r (3)

0x80 - (col - 2r), col > 2r

Since the ordinal values in I can have any arrangement, the com-
pound histogram Hc is filled in arbitrary order. As rows of pixels
are removed, the corresponding elements of Hc are zeroed. The
power of this technique becomes clear when it comes time to scan
the implicit histogram Bn to find the nth median output value.

11 4 13 2

7 8 1 14

0 15 6 9

12 3 10 5

440 101 561 94

206 206 73 805

19 999 162 310

440 94 361 123

Figure 9: The Compound Histogram Hc

In our initial approach, each implicit histogram Bn was spliced
together from O(log r) partial histograms, taking O(log r) time per
element. With the compound histogram, using 8-bit modular
arithmetic, elements of Bn can now be computed in constant time:

 Bn[v] = (Hc[v] + n) >> 7. (4)

For N > 128, this technique extends in a straightforward manner
to 16-bit compound histograms, sufficient for N <= 32768, and so
on. The computational complexity is independent of element size.

4.4 Coarse-To-Fine Recursion

There is one final detail. As the radius increases, the histogram
size scales as O(r2), which directly affects the histogram scanning
distance and thus the algorithm’s time-complexity. This complica-
tion is addressed by computing the median in stages from coarse
to fine precision. Alparone et al. [1994] applied a similar tech-
nique to the O(r) algorithm, employing two levels of resolution to
process 10, 12, or 14-bit images in faster (but still O(r)) time.
Here we apply an analogous technique to our log-time algorithm.

In our case, the coarse-to-fine calculation is performed by right-
shifting the ordinal image 8 bits at a time (or similar radix) until it
reaches a fixed low resolution; e.g., 10 bits per pixel. Then the
O(log r) algorithm from Section 3 is applied to the low-resolution
data (whose values are no longer unique), storing not only the
median values, but also the number of values strictly below the
median. This result forms a pivot from which we calculate the
median at the next-higher level of resolution. For example, if the
lowest-resolution median value for a pixel is 0x84, and there are n
values below 0x84 in its histogram, then there will be n values
below 0x8400 in the next-higher-resolution histogram, and the
median will be in [0x8400 .. 0x84FF]. This scanning is bounded
by a constant [256] number of steps per iteration, with each itera-
tion adding eight bits of precision to the output. The final iteration
is performed using the compound histogram, which yields the
full-precision ordinal result. The entire process requires O(log r)
levels of recursion, each taking O(log r) time as shown in Section
3, for an overall computational complexity of O(log2 r). ☐

4.5 Implementation Notes

Applying a radius-r median filter to an ordinal image cannot out-
put any of the lowest (2r2 + 2r) ordinal values, because by defini-
tion the median must exceed that many values. The filter can thus

treat all such values as a single low constant, and likewise the (2r2
+ 2r) highest values as a single high constant, without affecting
the final result. This “endpoint compression” can be incorporated
into the ordinal transform, allowing input windows significantly
larger than 216 pixels to be filtered using 16-bit ordinal images.

Interestingly, since each ordinal value is unique, the median out-
put for each pixel also tells us where in the source image that
value came from, generating a vector field. On high-frequency
images this field is quite noisy, but on smoother images it exhibits
surprising structure. (Figure 14 on the last page is an emergent
example of this structure.) Also, a variation of Hc where both row
and column information is stored at each index can allow histo-
gram elements of any computable region (e.g., a circle) to be de-
termined in constant time. We have not fully explored these prop-
erties, but they suggest possible directions for future research.

For our implemented range of radii [1...127], the compound histo-
gram is efficient enough not to require the coarse-to-fine recursion
at all, except on carefully-constructed worst-case data. (Real-
world images are invariably close to best-case.) In fact, the ordi-
nal transform by itself is often the performance bottleneck. As
shown in Figure 10, our implementation outperforms the 16-bit
Median filter in Photoshop® CS2 by up to a factor of 20, with
identical numerical results.

Figure 10: 16-Bit Median Filter Performance

5 The Bilateral Filter
The bilateral filter is a normalized convolution in which the
weighting for each pixel p is determined by the spatial distance
from the center pixel s, as well as its relative difference in inten-
sity. In the literature (Tomasi et al. [1998] and Durand et al.
[2002]), the spatial and intensity weighting functions f and g are
typically Gaussian; Photoshop® CS2 implements a box spatial
filter and triangular intensity filter. These functions multiply to-
gether to produce the weighting for each pixel. For input image I,
output image J and window Ω, the bilateral is defined as follows:

The special case of a spatial box-filter (with arbitrary intensity
function) is worth studying, because the weighting function be-
comes constant for all pixels of a given intensity. Under this con-
dition, the histogram of each spatial window becomes sufficient

Js =
∑

p∈Ω

f(p− s)g(Ip − Is)Ip

/∑

p∈Ω

f(p− s)g(Ip − Is). (5)

to perform the filtering operation. Our O(log r) median-filtering
algorithm already generates these histograms, so the bilateral
convolution can be appended in constant time per pixel, scaling
with the support of the intensity function g.

For higher-precision data, one can either dither the source data
into 8 bits before processing (which introduces surprisingly little
error), or else downsample the source intensities into the histo-
grams (along the lines of Paris et al. [2006]), which requires larger
histogram elements but yields better accuracy. Durand et al.
[2002] applied the bilateral to log-scaled images and re-expanded
the result, but this approach can pose precision problems when
filtering 8-bit data. Fortunately, this logarithmic approach can be
approximated on linear data by scaling the width of g in propor-
tion to the intensity of the center pixel while biasing the weight
toward smaller values, yielding a new function g’. The rightmost
image in Figure 11 shows the result of this logarithmic bilateral
on 8-bit data, using a simple variable-width triangular function for
g’. (Note the improved lip color and hair detail.) More sophisti-
cated intensity functions can be precomputed for all (Ip, Is). Our
linear-data approximation to the logarithmic bilateral is as fol-
lows:

One potential concern with our histogram-based method is the
imperfect frequency response of the spatial box filter. Visual arti-
facts may resemble faint mach bands, but these artifacts tend to be
drowned out by the signal of the preserved image (e.g., the images
in Figure 11 are box-filtered.) Still, smooth spatial falloff is
achievable with our method, using an iterative technique. Direct
iteration of the bilateral can yield an unintentionally cartoonish
look [Tomasi 1998], but indirect iteration is more effective. At
each step the output is re-filtered, while continuing to use the
original data for the intensity windows. For homogeneous areas
or with wide intensity kernels, this converges to a Gaussian with-
out creating the cartoonish look:

Figure 12: Original; One iteration; Three iterations (Eq. 8).

For the special case of the box-weighted bilateral, our technique
achieves the discrete-segments result of Durand et al. [2002] in
similar time, but with 256 segments instead of 10-20, and at full
spatial resolution. This makes the result translation-invariant
(avoiding artifacts due to the phase of the subsampling grid), and
the high segment count allows high-dynamic-range images to be
filtered with minimal loss of precision. Slight color artifacts may
be introduced as a result of processing the image by channel, but
we have found these also to be imperceptible on typical images.

With a single iteration and a fixed triangular intensity function
(support 80 levels), our results numerically match Photoshop’s
Surface Blur output, with up to twenty-fold acceleration. The
performance bottleneck (over 80% of the calculation) is the con-
stant time spent multiplying each window’s histogram by the in-
tensity function, which accounts for the flatness of our perform-
ance curve. Reducing our implementation to 64 segments should
nearly triple its speed, while maintaining very high quality results.

Figure 13: Bilateral Filter Performance

Figure 11: The Bilateral Filter. From left: 8-Bit Source Image; Linear-Intensity Bilateral (Eq. 5); Logarithmic-Intensity Bilateral (Eq. 6).

Js =
∑

p∈Ω

f(p− s)g′(Ip/Is)Ip

/∑

p∈Ω

f(p− s)g′(Ip/Is). (6)

where g′(x) = g(log x)/
√

x. (7)

In+1
s =

∑

p∈Ω

f(p− s)g(In
p , I0

s)In
p

/∑

p∈Ω

f(p− s)g(In
p , I0

s). (8)

6 Conclusion
We have presented a logarithmic-time median filter algorithm,
scalable to arbitrary radius and adaptable to images of any bit-
depth. We believe this is the most efficient median algorithm yet
developed, both in terms of theoretical complexity and real-world
performance. Our algorithm can be extended to perform general
rank-order filtering, and it is flexible enough to accomplish a wide
variety of practical and creative tasks.

Significantly, we have shown that our algorithm can be adapted to
perform bilateral filtering, where it becomes a highly effective
noise-removal tool. Our algorithm provides a high-precision,
translation-invariant, realtime implementation of the bilateral
filter, and supports nonlinear intensity scaling, which greatly en-
hances the quality of the result.

Our algorithms have shown their advantage not only at high radii
but across the spectrum. In the time it takes Photoshop® CS2 to
process a 5x5 median or bilateral filter, our implementation can
process any kernel up to 255x255. We have adapted our algorithm
to multiple processors with near-linear performance gains, up to
3.2x faster on a four-processor system versus a single processor.
The accompanying videos demonstrate the realtime performance
of our median and bilateral filters.

Now that the speed of the median filter has been brought onto par
with the workhorse filters of image-processing (e.g. Gaussian blur
and FFT), we anticipate that the median filter and its derivatives
will become a more widely used part of the standard image-
processing repertoire. It is our hope that our algorithms spark
renewed interest in this line of research, and we are confident that
new applications and discoveries lie just around the corner.

Acknowledgments
Special thanks to Paul Heckbert for providing invaluable feedback
in the early stages. Also thanks to Blaise Agüera y Arcas, Michael
Herf, Klaus Schauser, Tobias Höllerer and Ian Gilman for their
constructive critiques. To the talented Gretchen Elise for the use
of her photo. To the reviewers for their time and insightful com-
ments. Finally to Kai Krause, for the String Theory technique!

References
ALPARONE, L., CAPPELLINI, V., AND GARZELLI, A. 1994. A coarse-to-fine

algorithm for fast median filtering of image data with a huge number
of levels. Signal Processing, Vol. 39 No. 1-2, pp. 33-41.

COOLEY, J. H. AND TUKEY, J. 1965. An Algorithm for the Machine Calcu-
lation of the Complex Fourier series. Mathematics of Computation,
vol. 19, pp. 297-301.

DURAND, F. AND DORSEY, J. 2002. Fast Bilateral Filtering for the Display
of High-Dynamic-Range Images. ACM SIGGRAPH 2002.

HECKBERT, P. 1986. Filtering by Repeated Integration. ACM SIGGRAPH
1986.

Figure 14: Kai’s String Theory. A high-precision median filter is
applied to a soft 16-bit mask, and the before-after difference

(amplified 250x and colorized) is shown above. Far from the low-
frequency result one might expect, the contours of the soft mask
“beat” against the median filter’s discrete sampling grid, produc-
ing an intricate filigree along rational field lines. This effect is

ordinarily imperceptible, but with high amplification it lends itself
to an unusual creative use of the median filter.

HUANG, T.S. 1981. Two-Dimensional Signal Processing II: Transforms
and Median Filters. Berlin: Springer-Verlag, pp. 209-211.

GIL, J. AND WERMAN, M. 1993. Computing 2-D Min, Median, and Max
Filters. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 15
No. 5, pp. 504-507.

KABIR, I. 1996. High Performance Computer Imaging. Greenwich, CT.
Manning Publications. pp. 181-192.

PARIS, S. AND DURAND, F. 2006. A Fast Approximation of the Bilateral
Filter using a Signal Processing Approach. ECCV 2006.

PHA, T. Q. AND VLIET, L. J. V. 2005. Separable bilateral filtering for fast
video preprocessing. IEEE Int. Conf. on Multimedia & Expo. CD1-4.

RANKA, S. AND SAHNI, S. 1989. Efficient Serial and Parallel Algorithms
for Median Filtering. Proceeding 1989 International Conference on
Parallel Processing, III-56 -- III-62.

TERDIMAN, P. 2000. Radix Sort Revisited. <http://www.codercorner.com
/RadixSortRevisited.htm>

TANIMOTO, S. L. 1995. Fast Median Filtering Algorithms for Mesh Com-
puters. Pattern Recognition, vol. 28, no. 12, pp. 1965-1972.

TOMASI , C. AND MANDUCHI , R. 1998. Bilateral filtering for gray and
color images. In Proc. IEEE Int. Conf. on Computer Vision, 836–846.

TUKEY, J.W. 1977. Exploratory Data Analysis. Reading, MA. Addison-
Wesley.

WEISS, B. 2006. Method and Apparatus for Processing Image Data. US
Patent 7,010,163.

WU, C. H. AND HORNG, S. J. 2003. Fast and Scalable Selection Algorithms
with Applications to Median Filtering. IEEE Transactions on Parallel
and Distributed Systems, vol. 14, no. 10, pp. 983-992.

This work is protected by US Patent 7,010,163 and Patents Pending.
Adobe and Photoshop are registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

