
Abstract
Median filtering is a cornerstone of modern image processing   
and is used extensively in smoothing and de-noising applications.  
The fastest commercial implementations (e.g. in Adobe® Pho-
toshop® CS2) exhibit O(r) runtime in the radius of the filter, 
which limits their usefulness in realtime or resolution-independent 
contexts. We introduce a CPU-based, vectorizable O(log r) algo-
rithm for median filtering, to our knowledge the most  efficient yet 
developed. Our algorithm extends to  images of any bit-depth, and 
can also be adapted to  perform bilateral filtering. On 8-bit  data 
our median filter outperforms Photoshop’s implementation by up 
to a factor of fifty.
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1  Introduction

1.1  Median Filtering

The median filter was introduced by Tukey [1977], and over the 
years tremendous effort has gone into its  optimization and refine-
ment. It provides  a mechanism for reducing image noise, while 
preserving edges more effectively than a linear smoothing filter. 
Many common image-processing techniques such as rank-order 
and morphological processing are variations on the basic median 
algorithm, and the filter can be used as a steppingstone to more 
sophisticated effects. However, due to existing algorithms’  fun-
damental slowness, its practical use has typically been restricted 
to small kernel sizes and/or low-resolution images.

Figure 1:  8-Bit Median Filter Performance

Adobe® Photoshop® CS2 is the de facto  standard for high-
performance image processing, with a median filter that scales to 
radius 100. This  filter exhibits roughly O(r) runtime per pixel, a 
constraint which significantly reduces its  performance for large 
filtering kernels. A variety of O(r) algorithms are well known (e.g. 
Huang 1981), but it is not obvious  that a faster algorithm should 
exist. The median  filter is not  separable, nor is it  linear, and there 
is  no iterative strategy for producing the final result, as there is 
with  e.g. Gaussian Blur [Heckbert 1986], or the Fast Fourier 
Transform [Cooley et  al. 1965]. A fast, high-radius implementa-
tion would be of considerable theoretical and practical value.

Gil et al. [1993] made significant progress  with a tree-based 
O(log2r) median-filtering algorithm, but its  per-pixel branching 
nature renders it ill-suited for deep-pipelined, vector-capable 
modern processors. Other efforts  have resorted to massive paral-
lelism on the presumption that a single processor is  insufficient: 
according to Wu et al. [2003], “...designing a parallel algorithm to 
process [the median  filter] is  the only way to get a real-time re-
sponse.” Ranka et al. [1989] proposed a parallel algorithm with a 
processor-time complexity of O(log4r), but this curve actually 
scales worse than linear for r   < 55 (= e4),  the point at which a 1% 
increase in radius corresponds to a 1% increase in computation.

Our algorithm overcomes all of these limitations and achieves 
O(log r) runtime per pixel on 8-bit data, for both median and bi-
lateral filtering. It is fully vectorizable and uses just O(r) storage. 
It also adapts as an O(log2r) algorithm to arbitrary-depth images, 
on  which it runs up to twenty times as fast  as Photoshop’s 16-bit 
Median filter. To our knowledge, the presented O(log r) algorithm 
is  the most  efficient  2D median filter yet developed, and processes 
8-bit data up to fifty times faster than Photoshop’s Median filter.
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Figure 2: Median Filter Variations.  Top row: original; sharpened 
with Gaussian; sharpened with median (note fewer halo artifacts.)  
Middle row: Filtered at 20th; 50th [median]; and 80th percentiles. 
Bottom row: “High Pass” using median; bilateral smoothing filter; 

logarithmic bilateral filter.

1.2  Bilateral Filtering

The Bilateral filter was  introduced by Tomasi et al. [1998] as a 
non-iterative means of smoothing images while retaining edge 
detail. It involves a weighted convolution in which the weight for 
each pixel depends not only on its distance from the center pixel, 
but also its relative intensity. As described, the bilateral filter has 
nominal O(r2) computational cost  per pixel. Photoshop® CS2’s 
16-bit Surface Blur filter reflects this O(r2) complexity, and be-
comes unusably  slow for even moderate radii. On 8-bit data, Pho-
toshop’s  Surface Blur exhibits a performance curve nearly identi-
cal to its  8-bit Median filter, suggesting that they  share the same 
core O(r) algorithm.

Durand et al. [2002] developed a much more efficient technique, 
refined and accelerated by Paris et al. [2006]. Durand’s method 
approximates the bilateral  by filtering subsampled copies  of the 
image with discrete intensity  kernels, and recombining the results 
using linear interpolation. It  has the paradoxical property of be-
coming faster  as  the radius increases (due to greater subsam-
pling), but also has some potential drawbacks. For one, it is not 
translation-invariant: the exact output is dependent on the phase of 
the subsampling grid. Also, the discretization may lead to a fur-
ther loss of precision, particularly on high-dynamic-range images 
with narrow intensity-weighting functions.

Our bilateral filtering algorithm maintains high resolution in both 
space and intensity, and is translation-invariant. It is based on a 
box spatial kernel, which can be iterated to yield smooth spatial 
falloff. It is derived from the same core algorithm as our fast 
O(log r) median filter, and adapts  to 16-bit and HDR data with 
minimal loss of precision.

1.3  Structure

Our approach in this  paper will be first to  illustrate the conven-
tional O(r) median algorithm for 8-bit images, and analyze its 
performance and limitations. Then we will show in steps  how to 
improve it;  first  by constant  factors, then into O(√r) and O(∛r) 
algorithms, and from there into an O(log r) algorithm. We will 
show how our approach adapts to higher bit-depth data, such as 
16-bit and HDR floating-point. Finally, we will show how the 
algorithm can be adapted to perform bilateral filtering, and com-
pare it with previous methods.

2  The Basic O(r) Algorithm

Consider the case of applying a radius-r median filter to an 8-bit 
image. Assume a source image that is larger than  the destination 
by  r pixels on all sides, to sidestep edge-related concerns. (In 
practice, we repeat edge pixels to fill undefined areas, and process 
color images on a per-channel basis.) Because the median  filter is 
local, it can be applied to arbitrary-size images in  tiles. As a con-
sequence, its total runtime scales linearly  with image area: O(S2) 
for an S-by-S image.

The fundamental property that concerns us here is runtime per 
pixel, as a function of filter radius. This corresponds  to the per-
formance a user will experience while adjusting the filter radius, 
and is the primary differentiating characteristic between median-
filtering algorithms. For reference, a brute-force implementation 
can calculate each output pixel  in O(r2 log  r) time, by sorting the 
corresponding (2r + 1)2 -pixel input window and selecting the 
median value as output.

On discrete data, a radix-sort can be used to reduce the sorting 
complexity to O(r2) operations; this can  be done for some 
floating-point data as well [Terdiman 2000]. In the case of 8-bit 
data, we use a 256-element histogram, H. Once the input values 
are added to H, the median value lies in the first index for which 
the sum of values to that index reaches 2r2 + 2r + 1. The median 
index can be found by integrating the histogram from one end 
until the appropriate sum is reached.

An improved algorithm was proposed by Huang [1981], based on 
the observation that adjacent windows overlap  to a considerable 
extent. Huang’s algorithm makes use of this  sequential overlap  to 
consolidate the redundant calculations, reducing the computa-
tional complexity to O(r). A modified version of Huang’s algo-
rithm is below:



r: radius of median filter. (shown above as r = 3.)
H: 256-element histogram.
I: input image, S + 2r pixels square.
O: output image [inset], S pixels square.

initialize H to I[0 .. 2r][0 .. 2r].  // yellow region
find median value m in H, write m to O[0][0].
    for row = 1 to S - 1:
        add values I[2r + row][0 .. 2r] to H.
        subtract values I[row - 1][0 .. 2r] from H.
        find median value m in H; write m to O[row][0].
    step sideways to next column (and process bottom to top, etc.).

Figure 3:  Pseudocode for Huang’s O(r) Algorithm

Huang’s algorithm is a significant  improvement over the brute-
force method. However, the window-sliding step  dominates the 
calculation with O(r) runtime per pixel, while the histogram-
scanning takes  constant time per pixel. This suggests that we 
should  look for a way to make the window-sliding faster, even at 
the expense of making the histogram-scanning slower.

Observe that as  the window zigzags through the image, it passes 
through each region several  times, performing nearly the same 
operations on each pass. (Picture mowing your lawn back and 
forth, shifting sideways one centimeter each time.) This redun-
dancy is  considerable, and mirrors  the adjacent-window overlap 
that led to Huang’s algorithm.

The difficulty  is that these redundant calculations occur at widely 
spaced time intervals in the computation; perhaps tens of thou-
sands of processor cycles apart, so they cannot  be combined using 
the same sequential  logic that led to the O(r) technique. Yet, 
eliminating these redundancies is the key to a dramatically faster 
algorithm.

3  The O(log r) Algorithm

3.1  Synchronicity

The fundamental  idea behind this paper, and the mechanism that 
enables our fast algorithm, is  the observation that if multiple col-
umns are processed at once, the aforementioned redundant  calcu-
lations become sequential. This gives us the opportunity  to con-
solidate them, resulting in huge increases in performance.

3.2  Distributive Histograms

A straightforward  adaptation of Huang’s algorithm to process N 
columns at once involves the maintenance of N histograms, one 
per output column: H0 .. HN-1. This  is essentially just a rearrange-
ment of operations; the runtime complexity is  unchanged. Each 
input pixel  gets  added to 2r  + 1 histograms over the course of 
filtering the image, leading to the O(r) runtime complexity.

Fortunately, the explicit maintenance of each histogram Hn is 
unnecessary, due to the distributive property of histograms. This is 
where our approach diverges from Huang’s algorithm. Histogram  
distributivity means that for disjoint image regions A and B:

 HA∪B[v]  ≡  HA[v] + HB[v]                                         (1)

In other words, if an image window W  is  the union of two disjoint 
regions A and B, then its histogram HW is equal to HA + HB. The 
median element of W  can then be found by scanning the implicit 
histogram HW, splicing it together from HA and HB on  the fly. 
(This extends to signed linear combinations; HA ≡ HW - HB, etc.)

In the case of median-filtering N columns, our approach is to form 
a set H* of partial histograms P0 .. PN-1 (whose elements may be 
signed), such that each histogram H0 .. HN-1 is representable as the 
sum of T partial histograms from H*. Figure 4 shows how a row 
of pixels v0 .. v2r+8 is added to H*, for the case N = 9, T = 2.

Huang: H0 .. H8

H0[v0 .. v2r    ]++;
H1[v1 .. v2r+1]++;
H2[v2 .. v2r+2]++;
H3[v3 .. v2r+3]++;
H4[v4 .. v2r+4]++;
H5[v5 .. v2r+5]++;
H6[v6 .. v2r+6]++;
H7[v7 .. v2r+7]++;
H8[v8 .. v2r+8]++;

18r + 9 operations

Our Method: P0 .. P8 ⊆  H*

P0[v0..v3]++;  P0[v2r+1..v2r+4]--;
P1[v1..v3]++;  P1[v2r+2..v2r+4]--;
P2[v2..v3]++;  P2[v2r+3..v2r+4]--;
P3[     v3]++;  P3[         v2r+4]--;
P4[v4 .......................... v2r+4]++;
P5[v4     ]--;    P5[v2r+5         ]++;
P6[v4..v5]--;    P6[v2r+5..v2r+6]++;
P7[v4..v6]--;    P7[v2r+5..v2r+7]++;
P8[v4..v7]--;    P8[v2r+5..v2r+8]++;

2r + 41 operations

Mapping:

H0 ≡ P0 + P4

H1 ≡ P1 + P4

H2 ≡ P2 + P4

H3 ≡ P3 + P4

H4 ≡         P4

H5 ≡ P5 + P4

H6 ≡ P6 + P4

H7 ≡ P7 + P4

H8 ≡ P8 + P4

T = 2

Figure 4: Adding a row of pixels to H*, for the case N = 9, T = 2.                                      
Each layer shows how the corresponding histogram Hn is formed 
from partial histograms Pn in H*. The pseudocode shows how a 

row of pixels v0 .. v2r+8 is added to H*. The “holes” represent pix-
els that are added to the central histogram P4 but subtracted from 

partial histograms, canceling themselves out.



The histogram set H* is  arranged like a tree, with a central histo-
gram (P4) representing the input window for the central column, 
and the other partial histograms Pn representing the difference 
between the central and adjacent  windows. The sum of each par-
tial plus central histogram yields  the full histogram for the corre-
sponding  square input window. By widening the yellow central 
region and fitting the partial histograms to its  edges, the 9-column 
technique can be adapted to perform median filtering of arbitrary 
radius. The time spent modifying H* is  still O(r), but with a much 
lower constant than Huang’s algorithm. The median extraction 
time from H* remains constant regardless of r.

The more fundamental  improvement in efficiency comes when we 
allow the number of columns N to vary with r, conceptually add-
ing more planes to Figure 4. For N output columns, the number of 
modifications to H* per output pixel is (N2 + 4r  + 1) / N. (The 
graphic in  Figure 4 show the case of N = 9, r = 4, requiring 98 
adjustments to H* per row or about  11 per output pixel.) Solving 
for N to minimize the number of adjustments  gives N ≈ 2√r, 
which yields O(√r) histogram modifications per pixel. Thus, the 
complexity of the T = 2, variable-N adaptive algorithm is O(√r).

3.3  Three Tiers and Beyond

Figure 5:  H* Histogram Layout for N = 63, T = 3.

Figure 5 shows a layout  for processing sixty-three columns  at 
once. It is  the three-tiered analogue of Figure 4, this  time 
“viewed” from the side. There is a single shared histogram P31 
[yellow] corresponding to the central window; eight partial histo-
grams [orange] at seven-pixel intervals; and for each of these, six 
small partial histograms [red] at unit  intervals; sixty-three histo-
grams altogether. Each input pixel is added/subtracted to each 
histogram intersecting its  column. In this example, a 63-by-1 
block of output is produced at each iteration. The mapping of Pn 
to Hn becomes:

Hn = P31 + P7!n/7"+3 + Pn  (2)

where the second and third terms are ignored if they match earlier 
terms (e.g., H24 = P31 + P24.) The structure of H* is recursive;  the 
central yellow histogram forms a rough approximation to any 
particular Hn; the orange partial histograms refine that approxima-
tion, and the red histograms provide the final correction to make 
the sums exact. Once H* is initialized, the full histogram of each 
of the 63  square input windows is expressible per Eq. 2 as the sum 

of one red histogram (or none), one orange histogram (or none), 
and the yellow central  histogram. The illustrated case of N = 63, T 
= 3,  r  = 31 requires  ~18 histogram modifications per output pixel. 
The median-extraction from H* takes constant time, as the three 
partial histograms are spliced together on the fly. 

For the general case of 3-tiered structures, processing N columns 
at once and with tier radix √N, the number of histogram adjust-
ments per output pixel  becomes √N + ((4r + 2) / N). For radius r, 
solving for optimal N yields N ≈ 4r⅔, and the runtime of the three-
tiered adaptive algorithm is therefore O(∛r).

In practice, three tiers covers the realistic range of implementation 
(into the hundreds), but our technique can be extended to arbitrary 
T. In the limit, a radius-r median filter can be computed across N 
= O(r) columns at once, using N histograms arranged into  T = 
O(log r) tiers  of constant radix. For example, a radius one-million 
median filter can be computed across N = 96 = 531,441 columns 
at once, using 96 partial histograms arranged in seven tiers of 
radix 9, occupying roughly 500 megabytes of storage. Sliding the 
window from one row to  the next requires O(log r) ≈ 114 histo-
gram modifications per output pixel. Extracting each median  takes 
O(log r) steps; in this case splicing up to seven partial histograms 
together to  construct each Hn, counterbalancing the O(log r) com-
plexity of writing to H*. Therefore, the overall computational cost 
per pixel is O(log r).     ☐

r:    radius of median filter.
H*: Array of partial histograms, processing N columns.
I:    input image, N + 2r pixels square.
O:  output image, N pixels square.

for each row in  [0 .. 2r]:      // Initialize H*
        Add row, I[row][0 .. 2r + N - 1] to H*, as per Figure 4
for each output pixel in O[0][col]:  // compute first N median values
        scan Hcol (implicit in H*) to the find the median m,
        write O[0][col] = m.
for row = 1 to N - 1: // step from top to bottom of image
        add new bottom row, I[row + 2r][0 .. 2r + N - 1], to H*.
        subtract old top row, I[row - 1][0 .. 2r + N - 1], from H*.
        find N new median values in H*; write to O[row][0 .. N - 1].

Figure 6:  Pseudocode for O(log r) Algorithm



3.4  Implementation Notes

Scanning the histogram from index zero to find the median takes 
about 128 steps  on average. Huang [1981] suggested using each 
output  value as a “pivot” to find the next median value: as H is 
scanned to find m, we keep track of the number of values v < m in 
H. Then as we add and remove pixels  from H, we keep a running 
count of how many values satisfy v < m. This allows us to scan 
the updated histogram starting from m, which is typically much 
faster than starting from index zero.

Figure 7: Pivot Tracking. The middle image shows the approxi-
mation obtained using one pivot per sixteen columns to track the 
smallest median values. H* is then scanned upwards from these 
pivots (several columns at a time, vectorized) to yield the exact 

median result, right.

This heuristic adapts  to  the O(log r) algorithm by using O(log r) 
pivots  across the N columns, with each pivot tracking the smallest 
median value in its respective columns. This approach obtains 
much of the benefit of the heuristic while preserving the O(log r) 
complexity. Since the pivot tracking involves many consecutive 
bytewise compares, it is ideally suited for vector optimization. 

Finally, it is  useful to interleave the partial  histograms Pn in mem-
ory, so that  multiple adjacent histograms can be modified simulta-
neously using vector loads and stores. This greatly accelerates the 
reading and writing of H*.

4  Higher-Depth Median Filtering

4.1  Adapting the 8-bit Algorithm

16-bit and HDR images have already become mainstream, so it  is 
important that our median filter work with images of arbitrary bit-
depth. A direct extension of the 8-bit algorithm is problematic, 
because the histograms must stretch to accommodate every possi-
ble value, growing exponentially with bit-depth. The algorithm 
still remains O(log  r), but storage considerations render it  imprac-
tical for 16-bit images and impossible for floating-point images.

4.2  The Ordinal Transform

H* is reduced  to a manageable size through a technique we call 
the ordinal transform. This involves sorting  the input image val-
ues, storing the sorted list, and replacing each cardinal value with 
its ordinal equivalent. (Duplicate cardinal values map to  consecu-
tive ordinal values.) The median filter is  then applied to the ordi-
nal image, and the transform is  inverted to restore the cardinal-
valued result. The ordinal transform operates on images of any 
depth, in logarithmic or constant time per pixel.

In this operation, the nonlinearity of the median filter is crucial. 
Any linear filter (e.g., Gaussian blur) would not  be invariant  under 
the ordinal transform, but  the median filter is! That is because 
rank-order is preserved;  the kth-smallest cardinal  value maps to the 
kth-smallest  ordinal value. After the ordinal  transform is applied, 
the median filtering proceeds as in Section 3, this time using 
single-bit histograms Pn (sufficient here because each ordinal 
value is unique in the image), and the results are inverse-
transformed to yield the final filtered image.

Figure 8:  The Ordinal Transform. Duplicate cardinal values (e.g. 
94, 94, left) map to consecutive ordinal values (2 and 3, right).

Recall that  the histogram elements  in H* can go negative. At first 
this  appears problematic because the required range [-1, 0, 1] 
doesn’t fit into a single bit. However, since each summed implicit 
histogram value Hn[v] can only be either zero or one, only the 
lowest bit from each partial histogram must participate in the 
summation. Hence a single bit is  sufficient for each element of Pn, 
and the splicing accomplished through a bitwise XOR.

4.3 The Compound Histogram

For processing N columns in parallel, this  approach still requires 
the allocation and maintenance of N single-bit histograms. How-
ever, due to the uniqueness of values in the ordinal image, we can 
take advantage of a much more efficient encoding.

Consider the full histogram obtained by splicing the nth set of 
partial histograms in H* (consisting of the central  histogram plus 
one partial histogram from each tier), to yield the single-bit histo-
gram for the nth input window. Label this binary histogram Bn. By 
definition, the single bit Bn[v] indicates whether the ordinal value 
v lies in the input window n.

Now, for N <= min(2r, 128), instead of allocating N binary histo-
grams, we allocate a single 8-bit compound histogram  Hc. As 
rows of pixels v = I[row][col] are added, we adjust Hc as follows:

Hc[v] = {
0xFF - col, col < N - 1

0x80,  N - 1 <= col <= 2r       (3)

0x80 - (col - 2r), col > 2r

Since the ordinal  values in I can have any arrangement, the com-
pound histogram Hc is filled in arbitrary order. As rows of pixels 
are removed, the corresponding elements of Hc are zeroed. The 
power of this technique becomes clear when it  comes time to scan 
the implicit histogram Bn to find the nth median output value.

11 4 13 2

7 8 1 14

0 15 6 9

12 3 10 5

440 101 561 94

206 206 73 805

19 999 162 310

440 94 361 123



Figure 9: The Compound Histogram Hc

In our initial approach, each implicit histogram Bn was spliced 
together from O(log r) partial histograms, taking O(log r) time per 
element. With the compound histogram, using 8-bit modular 
arithmetic, elements of Bn can now be computed in constant time:

          Bn[v] = (Hc[v] + n) >> 7.                                                   (4)

For N > 128, this technique extends in a straightforward manner 
to  16-bit  compound histograms, sufficient for N <= 32768, and so 
on. The computational complexity is independent of element size.

4.4 Coarse-To-Fine Recursion

There is one final detail. As the radius increases, the histogram 
size scales  as O(r2), which directly affects  the histogram scanning 
distance and thus the algorithm’s time-complexity. This complica-
tion  is addressed by computing the median in stages from coarse 
to  fine precision. Alparone et al. [1994] applied a similar tech-
nique to the O(r) algorithm, employing two levels of resolution to 
process 10, 12, or 14-bit images in faster (but  still O(r)) time. 
Here we apply an analogous technique to our log-time algorithm.

In our case, the coarse-to-fine calculation is performed by right-
shifting the ordinal image 8 bits at a time (or similar radix) until it 
reaches a fixed low resolution;  e.g., 10 bits  per pixel. Then the 
O(log r) algorithm from Section 3 is applied to the low-resolution 
data (whose values are no longer unique), storing not only the 
median values, but also the number of values strictly below the 
median. This result forms a pivot from which we calculate the 
median at the next-higher level of resolution. For example, if the 
lowest-resolution median value for a pixel is  0x84, and there are n 
values below 0x84 in its histogram, then there will be n values 
below 0x8400 in the next-higher-resolution histogram, and the 
median will be in [0x8400 .. 0x84FF]. This scanning is bounded 
by  a constant [256] number of steps per iteration, with  each itera-
tion  adding eight bits of precision to the output. The final iteration 
is  performed using the compound histogram, which yields the 
full-precision ordinal result. The entire process requires O(log  r) 
levels of recursion, each taking O(log r) time as shown in Section 
3, for an overall computational complexity of O(log2 r).    ☐

4.5 Implementation Notes

Applying  a radius-r  median filter to an ordinal image cannot out-
put any of the lowest (2r2 + 2r) ordinal values, because by defini-
tion  the median must exceed that many values. The filter can thus 

treat all such values as a single low constant, and likewise the (2r2 
+ 2r) highest values as a single high constant, without affecting 
the final result. This  “endpoint compression” can be incorporated 
into  the ordinal transform, allowing input windows significantly 
larger than 216 pixels to be filtered using 16-bit ordinal images.

Interestingly, since each ordinal value is unique, the median out-
put for each pixel also tells us where in  the source image that 
value came from, generating a vector field. On high-frequency 
images this field is quite noisy, but on smoother images it exhibits 
surprising  structure. (Figure 14 on the last  page is an emergent 
example of this structure.) Also, a variation of Hc where both row 
and column information is stored at each index can allow histo-
gram elements of any computable region (e.g., a circle) to  be de-
termined in constant time. We have not fully explored these prop-
erties, but they suggest possible directions for future research.

For our implemented range of radii [1...127], the compound histo-
gram is efficient enough not to require the coarse-to-fine recursion 
at all, except on carefully-constructed worst-case data. (Real-
world images are invariably  close to best-case.) In fact, the ordi-
nal transform by itself is often the performance bottleneck. As 
shown in Figure 10, our implementation outperforms the 16-bit 
Median filter in Photoshop® CS2 by up to a factor of 20, with 
identical numerical results. 

         
Figure 10:  16-Bit Median Filter Performance

5  The Bilateral Filter
The bilateral filter is  a normalized convolution in which the 
weighting for each pixel p is determined by the spatial distance 
from the center pixel s, as well as its relative difference in inten-
sity. In the literature (Tomasi et al. [1998] and Durand et al. 
[2002]), the spatial  and intensity weighting functions f and g are 
typically Gaussian;  Photoshop® CS2 implements a box spatial 
filter and triangular intensity filter. These functions  multiply to-
gether to  produce the weighting for each pixel. For input image I, 
output image J and window Ω, the bilateral is defined as follows:

The special case of a spatial  box-filter (with arbitrary intensity 
function) is worth studying, because the weighting function be-
comes constant  for all  pixels of a given intensity. Under this  con-
dition, the histogram of each spatial window becomes sufficient 

Js =
∑

p∈Ω

f(p− s)g(Ip − Is)Ip

/∑

p∈Ω

f(p− s)g(Ip − Is).    (5)



to  perform the filtering operation. Our O(log r) median-filtering 
algorithm already generates these histograms, so the bilateral 
convolution can be appended in constant time per pixel, scaling 
with the support of the intensity function g.

For higher-precision data, one can either dither the source data 
into  8 bits before processing (which introduces  surprisingly little 
error), or else downsample the source intensities  into the histo-
grams (along the lines of Paris et al. [2006]), which requires larger 
histogram elements but  yields better accuracy. Durand et al. 
[2002] applied the bilateral  to log-scaled images and re-expanded 
the result, but this  approach can pose precision problems when 
filtering 8-bit  data. Fortunately, this logarithmic approach can be 
approximated on linear data by scaling the width of g in propor-
tion  to the intensity  of the center pixel while biasing the weight 
toward smaller values, yielding a new function g’. The rightmost 
image in Figure 11 shows the result of this  logarithmic bilateral 
on  8-bit data, using a simple variable-width triangular function for 
g’. (Note the improved lip color and hair detail.) More sophisti-
cated intensity functions  can be precomputed for all  (Ip, Is). Our 
linear-data approximation to the logarithmic bilateral is as fol-
lows:

One potential concern with our histogram-based method is the 
imperfect frequency response of the spatial box filter. Visual arti-
facts may resemble faint mach bands, but these artifacts tend to be 
drowned out by the signal of the preserved image (e.g., the images 
in  Figure 11 are box-filtered.) Still, smooth spatial  falloff is 
achievable with our method, using an iterative technique. Direct 
iteration of the bilateral can yield an unintentionally cartoonish 
look  [Tomasi 1998], but indirect iteration is more effective. At 
each step the output is re-filtered, while continuing to use the 
original  data for the intensity windows. For homogeneous areas 
or with wide intensity kernels, this converges to a Gaussian  with-
out creating the cartoonish look:

Figure 12: Original; One iteration; Three iterations (Eq. 8). 

For the special case of the box-weighted bilateral, our technique 
achieves the discrete-segments result of Durand et  al. [2002] in 
similar time, but with 256 segments  instead of 10-20, and at  full 
spatial resolution. This makes the result translation-invariant 
(avoiding artifacts due to the phase of the subsampling grid), and 
the high segment count allows high-dynamic-range images to  be 
filtered with minimal loss of precision. Slight color artifacts may 
be introduced as a result of processing the image by channel, but 
we have found these also to be imperceptible on typical images.

With a single iteration and a fixed triangular intensity function 
(support 80 levels), our results numerically match Photoshop’s 
Surface Blur output, with up to twenty-fold acceleration. The 
performance bottleneck (over 80% of the calculation) is the con-
stant time spent multiplying each window’s histogram by the in-
tensity function, which accounts for the flatness of our perform-
ance curve. Reducing our implementation to  64 segments should 
nearly triple its speed, while maintaining very high quality results.

                    
Figure 13:  Bilateral Filter Performance

Figure 11: The Bilateral Filter.  From left:  8-Bit Source Image; Linear-Intensity Bilateral (Eq. 5); Logarithmic-Intensity Bilateral (Eq. 6).

Js =
∑

p∈Ω

f(p− s)g′(Ip/Is)Ip

/∑

p∈Ω

f(p− s)g′(Ip/Is).   (6)

where g′(x) = g(log x)/
√

x.    (7)

In+1
s =

∑

p∈Ω

f(p− s)g(In
p , I0

s )In
p

/∑

p∈Ω

f(p− s)g(In
p , I0

s ).   (8)



6  Conclusion
We have presented a logarithmic-time median filter algorithm, 
scalable to arbitrary radius and adaptable to images of any bit-
depth. We believe this is the most efficient median algorithm yet 
developed, both in terms of theoretical complexity  and real-world 
performance. Our algorithm can be extended to perform general 
rank-order filtering, and it  is flexible enough to accomplish a wide 
variety of practical and creative tasks.

Significantly, we have shown that our algorithm can be adapted to 
perform bilateral filtering, where it becomes a highly effective 
noise-removal tool. Our algorithm provides a high-precision, 
translation-invariant, realtime implementation of the bilateral 
filter, and supports nonlinear intensity scaling, which greatly  en-
hances the quality of the result.

Our algorithms have shown their advantage not only at high radii 
but across the spectrum. In the time it takes Photoshop® CS2 to 
process a 5x5 median or bilateral filter, our implementation can 
process any kernel up to  255x255. We have adapted our algorithm 
to  multiple processors with near-linear performance gains, up to 
3.2x faster on a four-processor system versus a single processor. 
The accompanying videos demonstrate the realtime performance 
of our median and bilateral filters.

Now that the speed of the median filter has been brought onto par 
with  the workhorse filters of image-processing  (e.g. Gaussian blur 
and FFT), we anticipate that  the median filter and its  derivatives 
will  become a more widely used part of the standard image-
processing repertoire. It is our hope that our algorithms spark 
renewed interest in this line of research, and we are confident that 
new applications and discoveries lie just around the corner.
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