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Abstract—This paper presents a method to exploit rank I. INTRODUCTION
statistics to improve fully automatic tracing of neurons from L .
noisy digital confocal microscope images. Previously proposed HE quantitative morphology of linear branched structures
exploratory tracing (vectorization) algorithms work by recursively such as blood vessels and neurons is of broad interest

following the neuronal topology, guided by responses of multiple [1]-[9]. Currently, much of the tracing is still conducted semi-

directional correlation kernels. These algorithms were found 10 \ysmatically. A human user interacts with a microscope that is
fail when the data was of lower quality (noisier, less contrast,

weak signal, or more discontinuous structures). This type of data enhanceq with computer imaging hardware and s.o-ftware (e.q.
is commonly encountered in the study of neuronal growth on Neurolucida). The user performs pattern recognition and the

microfabricated surfaces. We show that by partitioning the corre- computer system records the data, and generates morphome-
lation kernels in the tracing algorithm into multiple subkernels, tric summaries. In some cases, the computer assists the human

and using the median of their responses as the guiding criterion b icallv aliani h . f
improves the tracing precision from 41% to 89% for low-quality ~PY automatically aligning a cursor to the nearest image feature,

data, with a 5% improvement in recall. Improved handling was Or by automatically focusing the microscope [1], [10]-[12].
observed for artifacts such as discontinuities and/or hollowness of  This paper presents a new generation of automated tracing

structures. The new algorithms require slightly higher amounts of algorithms that perform morphometry of neurons, especially

computation, but are still acceptably fast, typically consuming less .
than 2 seconds on a personal computer (Pentium Ill, 500 MHz, those grown on man-made surfaces. This type of work has

128 MB). They produce labeling for all somas present in the a variety of applications, including the documentation of
field, and a graph-theoretic representation of all dendritic/axonal neuronal development, neuronal responses to trauma and

structures that can be edited. Topological and size measurements qisease. and neurotoxicology assays. Fig. 1 presents a sample

such as area, length, and tortuosity are derived readily. The . f tt d sili bstrat d
efficiency, accuracy, and fully-automated nature of the proposed Image of neurons grown on a patierned silicon substrate an

method makes it attractive for large-scale applications such as labeled immunocytochemically, along with automatically
high-throughput assays in the pharmaceutical industry, and study generated traces of the dendrites and axons. Underlying these

of neuron growth on nano/micro-fabricated structures. A careful - traces s a graph-theoretic representation that captures the

quantitative validation of the proposed algorithms is provided - . .
against manually derived tracing, using a performance measure neurons essential morphological characteristics. A number of

that combines the precision and recall metrics. topological and metric analyses could be conducted with such

. N L . a representation [1].
Index Terms—Biomedical image processing, image analysis, i K thi h . f ff
image edge analysis, image line pattern analysis, image processing, N €arlier work, this group has described fast and effec-
image segmentation, median filters. tive model-based algorithms for automatic tracing of linear

branched structures, such as neurons, in three-dimensional

volumetric images [13], and vasculature [8]. These methods are

based on the modeling assumption that the structures of interest

are bounded by nearly parallel edges. The present work was
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(b)

Fig. 1. (a) Laser-scanning confocal microscope image of multiple neurons growing on a patterned silicon substrate width, {by3he corresponding
automatically generated and labeled traces. In this low-noise example, a traditional correlation-based tracing algorithm generatesseisellent re

address the compelling need to perform fully automatic tracing Il. IMAGE ANALYSIS BACKGROUND

when the structures of interest appear to be discontinuous dughree approaches are recognized for analysis of linear
to noise and nonuniform contrast. The main idea is the uselgtnched structures such as neurons and vasculature. The first
median statistics instead of correlation operators used in prisrbased on skeletonization and branch point analysis [e.g.,
work. [14]-[18]]. The second is based on enhancing edge/line proper-
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Fig. 2. (Continued.)llustrating poor tracing performance in the presence of
high imaging noise. (c) The automatically generated and labeled traces using
the median based algorithm, all other settings being the same.

ties and then identifying process or vessel contours by chaining
edge pixels together [19]-[26]. Both approaches require the
processing of every image pixel with numerous operations per
pixel; hence, they tend to scale poorly with image size. The
third approach, exemplified by this paper and others, is referred
to variously as vectorization, vectorial tracking, or exploratory
tracing [7], [8], [27]. These methods work by first locating an
initial point, and then exploiting local image properties to trace
the structures recursively [8], [28].

Broadly, three categories of exploratory processing tech-
niques are described in the literature. In the first category,
the initial and end points of a vessel are entered manually
(sometimes a tentative centerline is also provided) [19]-[21],
[29]-[35]. In the second category, the algorithm starts with
a manually entered initial point and an initial direction, and
recursively tracks the entire arterial tree [7], [36], [37] using a
breadth-first search. In the context of neuron images, this would
correspond to tracing a single axon/dendrite tree that is efferent
from a single neuron. Clearly, such methods are not suitable
for images containing several neurons with each neuron having
several processes efferent from it, and when neurons are large
enough that only partial views are feasible. The third category,

Fig. 2. lllustrating poor tracing performance in the presence of high imagingcluding this work, consists of fully automated methods [8]

noise. (a) A low SNR laser-scanning confocal microscope image of multiplgat overcome the limitations of the first two.
neurons growing on a patterned silicon substrate. (b) The automatically he core algorithm presented here builds upon the prior work
generated and labeled traces using the average based algorithm. (c) Thl g p p p

automatically generated and labeled traces using the median based algoridfiSun [27], and our prior work [8], [13]. In particular, we em-

all other settings being the same.

ploy an adaptive two-dimensional (2-D) kernel as opposed to
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the fixed 2-D kernel used by Cagt al. [8] and the one-dimen-
sional (1-D) kernel used by Sun [7]. The adaptive kernel meth:
enables the algorithm to trace over apparent discontinuities | et
the dendritic/axonal structures. Further robustness is achie
by simultaneously detecting both edges of the dendrite/ax
structures. ;A
Canny’s edge detection algorithm [38], considered to be tl Uy
standard for edge detection, involves smoothing, directior
filtering, gradient computation, nonmaximum suppressio|_ P 4
thresholding and edge-linking applied to all the pixels [39
[40]. Canny analyzed the tradeoff between edge detection
localization, and derived optimal filters for detecting edges. F uju
showed that a Gaussian-smoothing prior to gradient compu v
tion is a good approximation to an optimal filter for step edge
The use of a Gaussian filter simplifies the implementation, b Ri
. . ight
cause it is separable. Canny also showed that both localizat
and detection could be improved simultaneously by increasi k;'e
the length of the filter along the edge direction as much as
posible. However, the Iength of the directional filter should b@'g. 3. IIIust_re_lt_ing t_he e_xploratory tracing_ algorit_hm. _Starting from centerline
chosen carefully. Canny's directional operator s formed % ahd el drectom, e pependardrectone, andwi wre
smoothing using a Gaussian kernel, differentiating normal iaximal. A step is taken along the direction of maximal respongé-to. This
the edge drection, and hen sampling along the hypolhesiiBICEEs D SEue | e e e POt e e
direction. For a given pixel, the response of the filters must RECi 21 focponse Kerdole at smgl. e lengthé . andh. are set
computed for different support, scale and orientation valuegiaptively, and can be different.
In our work, the scale is fixed, and the support and orientation
are adaptively adjusted to significantly reduce the search space. Il. M ETHODS
The major innovation here is the use of a median based filter
along the edge direction. The detection function used here i
low-pass differentiator (LPD) of the forfa-1, —2, 0, 2, l]T,
and the projection is a moving average with a support size

K pixels (Fig. 3). The length of the kemek, is set adap- addition to the image, the program generates a text output

tively to establish better localization and detection as well A%o ina the size and the location of the somas. and lenath. width
dynamically linking broken edges. Correlating a template with OVINg the Siz on ¢ . ' gin, Wi
np location of the neurons. In this section we present those as-

an image computes all of the above operations at once rathe . : ; .
9 b b ects of the tracing algorithms necessary to illustrate the dif-

than applying them in a sequential manner such as in Carn .
[38]. This contributes to the robustness and effectiveness grences between the tWO. kernel types. We do not discuss other
rts of the system described elsewhere [13], such as the soma

our tracing algorithms. The algorithms compute the templatB&' ™ ° ) . . .
on a Iocalglly rglevant portion o?the image V\F/)hiCh makes Ft)he etection and the seed point selection algorithms, both of which

computationally appealing as well. The template response at'g necessary for the system’s operation.
locationp along the orientatiom is expressed as:

aSoma and dendritic structures are assumed to have higher in-
?ensity values than the surrounding background, and the den-
%rfites/axons have roughly parallel and continuous boundaries.

ig. 1 shows a sample image along with the resulting traces.

A. Exploratory Tracing
The 5x K kernel given in (1) and shown in Fig. 3 is referred

1 K to as a “template.” Separate templates are constructed for the
R(p,u) = e ZT(P +ju,uy), (1) left and right boundaries of the structures, along different ori-
i=1 entations. The orientations are discretized to a small number

of values, typically 16 or 32. As illustrated in Fig. 3, starting
from centerline point (mid-point between the process or vessel
boundariesp!, and the orientationy’, of the process at this lo-

along the direction1, which is perpendicular ta, and K is ! . . ! :
: . cation, the next centerline point along the process is estimated
the length of the template (see Fig. 3). Boundary points are esti- .
an update equation of the form

mated as those resulting in maximum template responses. Since ‘ _ ‘
the directional templates are separable, the filter response com- pt =p 4+ au, (2)

puted in (1) can be interpreted as averaging the LPD respongges e, is a step size. The above update equation produces non-
along the edge direction. Therefore, we will refer to the respongg, ooth traces, especially when the local curvature is high. As l-
of this set of directional templates as "Average Response”. |iirated in Fig. 3, smoother traces are obtained by adding a fine-

Section IV, we describe a new set of templates where the avgfising step to (2), resulting in the following update equations:
aging along the edge direction is replaced by median filtering. i

. . ~i4+1 i .
We will refer the response of this new set of templates as “Me- PT+ =p' +au’ (3-a)
dian Response”. p Tt =pt! 4 vith (3-b)

wherer(p,u_ ) is the response of the 1-D LPD kernel @t
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Fig. 4. lllustrating the response of the median based template for different types of artifacts for a horizontal segment. If the backgroundhinisioyne

and the foreground intensity value is 2, then the total median response is 6 for all the cases, whereas the total average response is 4.6, R4orFgasad 3.

b, ¢, andd respectively. Panel (a) illustrates a discontinuity. As long as the break is less than half the size of the template, the boundaries are liriliigl success
Panel (b) shows protrusion artifacts. These structures cause the mean template based tracing to stop prematurely, but the median basedtestjolatecis ro
artifacts as long as the width of such distortions is less than half of the template size. Panel (c) is a case of severely corrupted boundarie aflomgies

of the pixels are not distorted, the median based template gives the desired response. Panel (d) illustrates the robustness of the mediamttrapéatgtivbé

the template is overestimated at regions of high curvature.

wherevit! is a correction (fine-tuning) vector, and-" indi-  Even when it was able to trace such low contrast images, it gen-
cates approximation. The correction vector is calculated by arated too many false positives (background) traces. Accurately
eraging the left and right boundary locations where the templated robustly tracing such image features is the motivation be-
response on each boundary is locally a maximum. The templatad the present work.
response is computed using (1). The orientation space is dis-
cretized toN values, wheréV is set by the user to best sample
the curvature of the structures of interest. For the results pre-
sented here, we uséd = 32 yielding an angular precision of Estimators based on order statistics are used preferentially
11.2% and a total of 64eft andright templates. For a detailedin computer vision applications where the data are distorted by
description of the tracing algorithm, see [8], [13]. outliers [47]. Mean estimators are known to have a breakdown
As illustrated in the next section, the tracing algorithm desoint of 0% [46], as opposed to median estimators that have
scribed above has demonstrated excellent performance whdreakdown point of 50%. In image processing median-based
applied to images with good contrast and high SNR. Howevsitatistics appear as median filters, known to be robust to impul-
it failed to trace images with low contrast and/or low SNR ratisive or pepper-and-salt noise [45]. These types of noise can be

IV. ROBUST TEMPLATES AND TRACING ALGORITHMS
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Fig. 5. lllustrating the superiority of the median template response compared to the average template response for a low magnification imagesdhares
computed at true boundary points (i.e., foreground) and at randomly selected background points (i.e., background) (a) CDF of the median)regfonsthéb
average response. Clearly, the median response is better at separating foreground and background points than the average response. F@ptiresmétian re
Kolmogorov—Smirnov (K-S) value is 0.76 (obtainediat= 15), and for the average response the K-S value is 0.5 (obtairfed=a67). (c) The ROC curves for

the same low contrast image. The paihts the best operating point on the median response curve and is obtained at a threshold value ofF,5-w8th 1%,

R =87.3%,andP = 88.9%. The pointB is the best operating point on the average response curve and is obtained at a threshold value oF54-WHh8 %,

R = 78.8%,andP = 71.2%.

referred to as outliers in statistical terms. Although pixel intemneasure holds while up to 50% of the LPD responses are cor-
sities can only assume positive values, the response of a LRIpted. Hence any stopping criteria defined based on template
can be either negative or positive, resulting in arbitrarily higlesponses can more accurately detect the neurons from the false
or low responses when corrupted with outliers. Hence, a falsackground responses. The situations where using the median
background response can be confused with a boundary temptatponse is advantageous are:

response, and vice versa. Similar to median filters used inimage1) Broken/Discontinuous Segments: The median-based
processing, we can redefine the template responses (1) by com-  algorithm can jump over missing structures, whereas
puting a median rather than mean for the LPD kernels along the  the average based a|go|’ithm terminates premature|y [See

edge direction as follows: Fig. 4(a)], especially in low-SNR and low-magnification
) . images where the neurons are thinner and therefore more
R(p,u) = I}fﬂ}i@(l’ +ju,ul). 4 vulnerable to noise.

2) Discontinuous Boundaries: The continuity of the bound-
The lengthK is estimated analogous to the average response aries is violated by thin structures, possible branches or
based tracing algorithm described in [13]. The robustness of undesired structures in the image [see Fig. 4(b)]. These
the median template response for different situations is illus-  structures cause the average based template tracing to stop
trated by an example in Fig. 4. Note that the median response prematurely, but the median based template is robust to
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Fig. 6. Comparing the quality of the automatic and manual traces. (a) A portion of an automatic trace magnified 5 times. (b) Manual trace of thersdme regi
general, automatic traces are smoother than manual traces. The arrows highlight a few such differences. (c-d) Comparing the inconsisteneig®ineiticee
and manual traces (A-M), with those between two sets of manual traces (M-M) for the same neuron image. Dis¢repamdyconsistency are plotted as a
function of disk size in Panels (c) and (d), respectively. Observe that the (A-M) average error is smaller than the (M-M) average errors.

such artifacts as long as the width of such distortionsis V. MEDIAN VS. AVERAGE; AN EMPIRICAL STUDY
less than half of the template length.

3) Impulsive Noise: The median response is robust to imprﬁ
sive noise, as long as half of the data is not corrupted [sg

The following experiment illustrates the superiority of the

edian template response over the average response. A total of

: ?mages were traced manually. For each image, the templates

Fig. 4(c)]. : : :

4 C ture- Unlike th based alaorithm. th d_were applied at each of its known boundary points, and the
) Curvature: Unlike the mean based algorithm, the medi sponses were histogrammed. To compensate for the fact that

bgsed tfric.:mhg IS Iests prone tlc;.pre;mc?tur.e S.tf(.) ppl?lg N t&anual traces may not exactly coincide with the true boundary
glons ot high curvature [see Fig. 4(d)] signi icantly Im-ints, templates were applied at points adjacent to boundary
proving the results particularly for low-resolution |mageg

L oints in several directions and maximum responses were

where the curvature is higher. noted. This resulted in two response histograms per image,
Note that, other than replacing the average response with three containing average template responses, and the other con-

median response, the tracing algorithm introduced in the ptaining median template responses. Similarly, two background
vious section and discussed in detail in [8], [13] remains thhesponse histograms were generated per image by applying
same. The next section illustrates the superiority of the medidre templates at randomly selected background points. At each

template response over the average response, especially inbackground point, the templates were allowed to shift (move)

ages with low SNR. and rotate locally, for maximum median and average template
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Fig. 7. lllustrates the discrepancy (average error of corresponding traces) and the consistency (percentage of inliers) as a function of disk radius
(a)—(b) High-contrast images. (c)—(d) Low-contrast images. Observe that the manual traces are superior to the automatic ones in both imagestyymsdsr
of 6 > 1. Median based tracing is more consistent and has less error than average based tracing. This improvement is significant for low-contrast images.

responses. The foreground and background histograms afiegativesi.e., the number of background points that did not
particular image contain the same number of points. Fig. 5 illugsass the threshold. Ldt P be the number ofalse positives
trates the foreground and background accumulative normaliZesl, the number of background points that passed the threshold.
histograms [which are estimates of the corresponding cumive define theecall, R, andprecision P, according to

lative distribution functions (cdf)] for a sample low-contrast

image. Observe that the foreground and background median R = TP (5)
cdf’s in Fig. 5(a) are more separated than the CDF'’s for the av- TP+ FN’

erage responses illustrated in Fig. 5(b). Quantitatively this can P= re ) (6)
be measured using the Kolmogorov-Simirov (K-S) test, which TP+ FP

measures the maximum difference between the two cdf’s. Th§ g1y 4 template should produce positive responses over the
me.dlan response definition resulted ina K-S measure of O'%@eground, and zero responses over the background. In such
while the average response resulted in a K-S measure of 0.3{.jjea) situation, one can perfectly classify foreground and

Higher K-S values imply that responses at true boundary poifS \.ground points. Therefore, achieving recall and precision of

are separable from responses due to background irregularijgoy, | realimages, however, such situations rarely occur, and
and noise. For instance, one can compare the performance, @ jance between precision and recall should be achieved. To
the two response estimators by applying a varying thresholddgynare the performance of the two template responses, it is
the histograms and at each threshold compute the classificaigfye convenient to use a single measure instead of two. One of

error. o the most frequently used measures combining both recall and
Let TP denote the number afue positivesi.e., the number precision is thef” measure, which is defined as

of foreground points that passed the threshold. L&t be the
number offalse negatives.e., the number of foreground points _(1+pB)RP
that did not pass the threshold. LEfV be the number ofrue F= BR+ P 7
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TABLE |
LISTING OF THE; AND THE ar; VALUES FORLOW- AND HIGH-CONTRAST IMAGES

" High-Contrast Images Low-Contrast Images

2

5 Recall a; Precision o, Recall o, Precision o,

A4

'é) Average | Median | Average | Median | Average | Median | Average | Median

1 0.41 0.43 0.34 0.35 0.22 0.42 0.41 0.33

2 0.81 0.88 0.70 0.73 0.41 0.89 0.79 0.74

3 0.87 0.93 0.76 0.77 0.45 0.94 0.88 0.81

4 0.89 0.94 0.77 0.79 0.47 0.95 0.91 0.83

5 0.91 0.95 0.79 0.80 0.49 0.96 0.94 0.85
whereg, a weighting factor, determines the relative weight of VI. EXPERIMENTAL RESULTS

the recall and precision components, depending on the appli-_, . . . . . . .
. . ) ) This section describes the specimen preparation, imaging
cation. For the following experimentg, was set to 1, i.e., the

- . . rotocols, computational setup, and presents some sample re-
recall and precision were assigned equal weights. The result b P P b

measure is often called th€, measureF; curves are the re- ?lﬁts' The tracing algor_lthms pr_esented !n this work have been
lemented and are in use since April 1999 at Wadsworth

ceiver operating characteristics (ROC) curves used in detect|
theory P g ( ) esearch Laboratory of the New York State Health Depart-

Applying a varying threshold to the cdf's of Fig. 5(a) and (bj€Nt: Albany, NY. The images presented here are merely
produced thef; curves in Fig. 5(c). The best operating poin§amples that were selected to illustrate certain aspects of the
using the median response definition was obtained at a thresHJ@Pithms.
of 15, and corresponds to/g value of 88.1%, & = 87.3%, _ . .
and P = 89.3%). This is denoted byl in Fig. 5(c). Compare A. Specimen Preparation and Imaging Protocols

this with the best operating point using the average responserhe neurons were obtained from whole brains from several
definition denoted by3 and corresponds t8, = 74.8%, (R = embryonic (day 18) Sprague-Dawley rats. The brains were
78.8%, and P = 71.2%). The results obtained from the Otherdissected, pooled, and maintained on ice in Hepes buffered
images suggest a similar conclusion—that the median respogggne solution (BSS) supplemented with 100 U/ml penicillin
is clearly superior to the mean. and 100 U/ml streptomycin [41]. Under a dissecting micro-

For completeness, we compared the two algorithms on at}é%'ope, hippocampi were dissected, cleaned of meningeal

ical hig'h contrast, high SNRimage. Similar to the above resuHssue, collected, then enzymatically digested with a solution
the cdf’s of the median responses were found to be more sei

2.5-mg/ml trypsin in BSS at 37C, without shaking, f
rable than the cdf’s of the average responses. However, the ]a'minngimesggstlir;siEe wasarinse d tmeeoijim?esavxiirlﬁ B(;rs at
ferences are not as substantial as those observed for low SNR. "~ g ) : . .
Quantitatively, the estimated K-S measures were 0.84 for t e temperature (five minutes per rinse) and mechanically
median and 0,.79 for the average, resulting in a K-S Idiﬁerené'SSOCiated by repeated pipetting first with a Pasteur pipette,

€ . ) ! A
of 0.05. Compare this with a difference of 0.19 (i.e., 0.76-0.5% d then with a Pasteur pipetie that had been fire polished 1o

for the low SNR image of Fig. 2. The same conclusion can 5 duce the internal _diameter by one ha_llf. Dissociated neurons

reached by comparing the best operating point from the RO then seeded directly onto pon—I_ysme coatged coverszhps or

curves for both images. To summarize, the median outperforfiicon colonnade surfaces at a densitydf x 10° cells/cm

the average regardless of image type. However, the median &tid allowed to adhere for two hours. .

performs the average by a much larger margin in low contrastT he surfaces with adherent neurons were inverted and sub-

images. This conclusion is supported by hundreds of tracesm@¢rged in glial-conditioned N2.1 media so that adherent neu-

actual neuron images. rons were facing, but separated from, a layer of previously pre-
This section has illustrated that the median template respoRgéed astrocytes. The resultant inverted cocultures were main-

is superior to the average template response with respect to ctaiied for 24 hours under standard cell culture conditions. The

sifying foreground and background points. However, it is ne@dherent neurons were rinsed with HBHS and fixed in situ using

essary to analyze the effect of the two response definitions warm (37°C) 4% paraformaldehyde for 10 minutes.

the accuracy of the tracing algorithms. This will be considered Fixed neurons were treated in 1% triton X-100 in HBHS at

in detail in Section VIl in the context of a validation study.  room temperature for 10 minutes and then in 6% BSA in HBHS
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TABLE I
LISTING OF THE F; VALUES FOR THE TEN HIGH CONTRAST IMAGES AND THE FIVE Low CONTRAST
IMAGES COMPUTED USING THE AVERAGE AND THE MEDIAN TRACING ALGORITHMS

High-Contrast Images | Low-Contrast Images
Image Number Average Median Average Median
1 0.88 0.91 0.89 0.88
2 0.81 0.84 0.87 0.87
3 0.88 0.90 0.43 0.86
4 0.93 0.94 0.72 0.84
5 0.87 091 0.59 0.87
6 0.85 0.89
7 0.81 0.83
8 0.81 0.81
9 0.85 0.87
10 0.86 0.88
Overall Average 0.855 0.878 0.70 0.864

for 30 minutes. The neurons were labeled using a solution conEight images were selected mostly at random, however, some
taining an antibody to a neuron specific subunit of tubulin (clongere selected to illustrate certain aspects of the algorithms. All
TuJ1, diluted 1:500, BabCO) in HBHS at 3T for 1 hour. The images are gray scale with 8 bits/pixel. None of the images were
neurons were then incubated in a biotin conjugated anti-mousanipulated before processing. However, in all instances, image
antibody (diluted 1:200, Sigma) or in Alexa-488 conjugated ageontrast and brightness were manipulaaéer they have been
tibody (diluted 1:200, Molecular Probes, Eugene, OR) &t@7 traced by our algorithm for printing purposes (many structures
for 40 min. Neurons stained using the biotinylated antibodyere too dim for direct printing). In other words, the algorithms
were subsequently stained with Quantum Red-conjugated streped the raw data.
tavidin (diluted 1:50, Sigma) in HBHS at room temperature for Fig. 1 illustrates an image and the corresponding traces. The
30 minutes. All samples were rinsed in HBHS and mounted amage has the dimensions 768 512 pixels. Segments and
coverslips in a 1:1 (v/v) solution of glycerol (Sigma): HBHSsomas are labeled with numbers and letters, respectively, while
supplemented with 1% n-propyl gallate. intersection/bifurcation points are marked with cross hairs. The
All fluorescently labeled samples were imaged by scannipgogram uses two-letter codes (e.g., “AA”, “AB”, etc.) for soma
laser confocal microscopy using either a BioRad MRC 600 atentification. In addition to the traces, the program generates
a NORAN OZ confocal unit attached to an Olympus invertetivo text outputs. The first is a text representation of the somas
microscope using a 10X 0.40 numerical aperture objective lelasid the traces in a format compatible with the Neurolucida
Each x, y image was recorded as a single frame to minimigeftware (MicroBrightfield Inc., Williston, VT). The second
photodamage. This results in noisy images compared to intetput is a text summarization of neuronal structures found in
grated images recorded either by slower scanning or signal am image. Fig. 2 illustrates a low SNR image along with its
tegration of multiple scans. An additional issue is the possibiligverage and median generated traces.
of nonuniform fluorophore absorpotion that results in apparentA quantitative analysis of the tracing algorithm is presented in
discontinuities. the next section. However, a few observations are in order. First,
The tracing program is implemented in C++ and does not rire tracing algorithm appears to be robust against nonuniform
quire any special hardware. The results here were obtained uddagkgrounds, as illustrated by Fig. 2. Second, neither the tracing
a Pentium 11l 500-MHz PC, with 128 Mbytes of RAM. A typ- nor the soma detection algorithms were affected by the high
ical 768 x 512 x 8 image is processed in less than 5 s. Thimtensity regions surrounding the somas in the images. Third,
includes I/0O, soma detection, tracing, and presentation. The &acing seems to terminate prematurely occasionally which can
tual tracing time depends on the complexity of the image, buth& corrected by adjusting certain parameters in the tracing algo-
usually around one second. rithm. However, we were unable to identify a single parameter
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Fig. 8. Further examples from a large-scale study [48] of neuronal behavior on patterned surfaces. Panel (a) is the result of automaticall8facing241
pixel image of neurons grown over a micropillar array with pillar width gfi2, and spacing of 1.6m. Panel (b) is an enlarged view of the trace around the neuron
at the upper right portion of the image. The traces are shown in green and the tips/junctions are shown in purple. The image is displayed usihgeatemted-o
scale that best highlights the background detail for this data. Panels (c) and (d) correspond to a smooth etched surface. The neurons grow ndachlyriare ran
this case.

that can generalize over all types of images, hence none of ffee discrepancy of the tracing algorithms is quantitatively
program parameters were adjusted manually. measured with respect to the estimated ground truth. It is
measured in pixels, and represents the error between the pro-
gram-generated traces and the manual ones. The consistency of
the tracing algorithms, on the other hand, measures the ability
This section presents a validation study of the tracingf the algorithms to regenerate traces after introducing certain
algorithm. This includes validating the accuracy as well agpes of image variations. It is the percentage of the common
the consistency of the algorithms. Accuracy is estimateédhces detected; hence it will be quantified in terms of the
with respect to a ground truth. Consequently, methods fsimilarity between the two sets of traces.
establishing the ground truth for 2-D neuron images from From a neuroscientist's point of view, several structural
a set of manual traces are presented. Since the ground trhhracteristics of neurons are important. These include soma
is an estimate calculated from manually traced images, wentroids, volumes, surface areas, and connectivity with other
prefer to use the terms “discrepancy” and “consistency” ratheomas. In addition, it is important to determine the centerlines
than “localization” and “detection.” Quantitative measures fasf all dendritic/axonal structures, their lengths, surface areas
estimating the similarity between sets of traces, and betwesmd volumes. It is also of interest to determine the topology
traces and the corresponding ground truth are also presentddsuch structures. For instance, one parameter of particular

VIl. M ETHODS FORVALIDATING THE TRACING ALGORITHMS
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interest is the order of a segment in the tree-like neuroriBthe consistency between the two traces are defined by
structure. Indeed, it is known that first-order (i.e., primary P, .
dendrites emerging from the soma) have different electrical %1 = p| x 100%; (9-a)
properties compared to higher-order segments. Q,|
Clearly, quantitative evaluation of an automatic system based w ==
on these characteristics requires the availability of ground truth, Q|
or a suitable “Gold Standard.” In the context of neuron image@pPserve that the two consistency measures, while similar in def-
the ground truth has to be established manually. It is usualfjition, may have different meaning as will be explained shortly.
difficult for a human to manually generate accurate and coRxhaustive search is required to establish correspondences be-
sistent traces. As illustrated in Fig. 6(a-b), manual traces dy¢een sets of tracing points. However, this can be accomplished
often jerky and don't line-up with the structures’ true centegfficiently using Euclidean Distance Maps.
lines. Furthermore, manual traces often suffer from inter- and ) )
intraexpert variability. Manual traces of the same image gen&- Comparison of Manual and Automatic Traces—A Case
ated by different human experts or by the same expert but4tdy
different times do not coincide exactly. In fact, we will illustrate  Twenty-one neuron images were manually traced at least
that automatic traces are superior to manual traces as far asahee. Five images were traced five times by the same person,
location of the centerline points is concerned. Hence, in this cdnit during different sessions. The images were then traced
text, it is inappropriate to validate the automatically generateding the tracing algorithm running in a batch mode (i.e.,
centerlines against their manual counterparts. On the other hamal tracing parameters were adjusted). Manual and automatic
the human observer is better at detection of segments. If th@ces of an image are cropped and enlarged for comparison
objective of a validation study is to determine whether there @nd illustrated in Fig. 6(a) and (b). The traces are very similar,
a one-to-one correspondence between automatically generdaikthis needs to be established quantitatively. Fig. 6(c) and (d)
traces and dendritic structures (i.e. detection-rate vs. false-alallstrates the average discrepancand the consistenayy, 4
rate, or the average number of false positives and false negativetveen a manual trag®I) and an automatic traceA) for
in a given image), then one would expect manual tracing to Hee complete image of Fig. 6(a) and (b). Fig. 6(c) illustrates
superior to its automatic counterpart. that the discrepancy between the two manual-traces are larger
than those between a manual trace and an automatic trace. For
example, for6 = 3, the discrepancy (average error) between
A. Algorithms for Measuring the Similarity of Traces the two manual traces is 0.88 pixels, while the discrepancy
) o o between an automatic trace and the manual traces is 0.72 pixels.
This section introduces methods to quantitatively measukgnoygh the difference between these two sets of traces is not
the similarity between two sets of traces corresponding 10 @46 especially when taking digitization errors into account,
same neuron image. The measures are based on the Euclidggni; jjiustrates the quality of automatic traces. Fig. 6(d)
distances between the corlrespo'ndln'g traces. The dlscrepamﬁgtrates that the consistency between automatic and manual
between two sets of centerline points is measured by computipgq js slightly less than those measured between two sets of
the average Euclidean distance between the points that gre. -1 traces. For example, &t= 3, 97% of the points in
within a distanceé. The consistency between two sets ife two manual traces were found to be inliers to each other,
measured by finding the percentage of points that are withify@ie only 919 of the points in the automatic trace were found
distance 0®. to be inliers to their manual counterparts. This is expected,
Let the neural structure centerline location sets from the t%cause humans are less ||ke|y to sk|p available structures or
images be denoteP and Q with |P| and|Q| points respec- trace background noise.
tively. Let the subseP, C P be the inlier points that have  The same observations were found to be true for all other sets
a correspondence in the other image; in other words for eaghmanual and automatic traces. This leads us to conclude that
pointp € P, there exists a point ilg € Q such that the Eu- gutomatic traces are, at the very least, of comparable quality to
clidean distance between these two points is less tifafrar- manual ones as far as locating the true location of the center-
thermore, denote the corresponding poinpo¢ P, inthe set |ines are concerned. Because of the observed discrepancy be-
Q by Cy(p) = argmingeq [|p — qf|- Similarly, letQ, € Q tween sets of manual traces, one can conclude that no single
denote the subset of inlier points @ whose closest point in manual trace is a good estimate of the true centerline. To quan-
setP is less thard, and for eacly € Q, let C,(q) denote its tjtatively measure the accuracy of the automatic tracing algo-
correspondence in sét. rithm, we first establish the true location of the centerlines (i.e.,
Observe that the number of points, is not necessarily ground truth) and then measure the discrepancy relative to the

equal to the number of points @, because one-to-one correestablished ground truth. This is described next.
spondence is not enforced due to the curved nature of the traces.

The spatial discrepancy between the two traces is defined byC. Methods for Approximating the Ground Truth

x 100%. (9-b)

For the purposes of this work, the true location of the cen-

Z Ilp — Cq(p)|| + 2# Z la— Cp(a)| - terlines is ap_proximated for ten high-contrast _images and fi\_/e
1Qy| acQ, low-contrast images. Each image was traced five times, by dif-
(8) ferent people, or by the same person at different times. There-

1

b= Sp
2P|

pEP,
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fore, resulting in 75 manual traces. Furthermore, both the dwetween the true location of a point and its estimated one as
erage and the median tracing algorithms were used to tracena#lasured by the discrepangylin fact, if we only consider in-
images. Therefore, resulting in a total of 105 images (tracebgr points (i.e., those points having corresponding ground truth
To establish the ground truth for a given image, we first estapeints), then the average tracing algorithm was found to be the
lished correspondences between all of its manual traces. ldest accurate. This is illustrated in Fig. 7(a) and (c). The fact
ally, the true location of centerline points would be estimatdfiat the average tracing algorithm was found to be slightly more
by the average of each of the correspondence sets. Howesgegurate than the median can be attributed to the fact that the
this may result in discontinuities in the estimated ground trutBuclidean distance is the error measure minimized by the mean
Alternatively, the following algorithm approximates averagingtatistics for the inlier points.

and produces continuous centerlines. First, we superimpose thiledian Versus Avage: Recall thatw; represents the per-
manual traces on an image, with pixel intensities being a funmentage of points in the tracéshat are inliers to ground truth
tion of the number of matching traces. Then perform a maopoeints, while a; represents the percentage of points in the
phological closing using a % 3 structuring element of the ground truth that are inliers to points in the trage$n other

1 11 _ _ words,a;¢ is a measure gfrecisionwhile ag; is a measure of
form | 1 1 1| to produce hole-free centerlines. Finally, weecall. Table | lists some of these values for low- and high-con-
111 trast images. For example, from the réws 2 in the high-con-

apply a modified version of the sequential thinning algorithifast images, Observe that 81% of the points generated by the
described in [42] to estimate the true location of the centerlinqﬁ,erage tracing program are adjacent to true centerline points.
Notice that without the above closing operation the grountompare this with 88% for the median algorithm. Furthermore,
truth centerlines may contain holes (i.e., a fork in the centerlifgos and 73% of the points in the ground truth were adjacent to
followed by a merge). Clearly, this is not desirable because WBints generated by the average- and median-tracing programs,
would like the ground truth to be representative of the manualspectively. The difference is more significant in low-contrast
traces collectively, not individually. The closing operation haﬁ?nages. For example, the rofv= 2 in the low-contrast im-
another desirable effect. Notice that the above structuring egqjes column indicates that the average tracing algorithm has a
ment results in images where pixel intensities are directly PrBrecision of 41%, while the median has a precision of 89%. On
portional to the number of manual traces contributing to thefhe other hand, the average tracing algorithm has slightly better
This is desirable because the thinning algorithm is designedif:a|| than the median at 79% and 74%, respectively. In other
remove low intensity pixels before high intensity ones, whicljords, although the average tracing algorithm was able to trace
means centerlines that agree with the majority of traces at eg@fy, of the segments present in the image, 59% of the traces

point. it generated correspond to background noise rather than actual
o _ _ _ segments. This is consistent with our earlier statement that the
D. Quantitative Analysis of the Tracing Algorithms average tracing algorithm tends to over-generate.

In this section, we use ground truth estimates to show thatTo compare the performance of the average and median
1) manual traces are superior to automatic traces with respa€ing algorithms against each other, we assume thatcheth
to tracing all segments present, and avoiding background noiée., precision) and.c; (i.e., recall), are equally important and
2) automatic traces are more accurate than manual traces inc@§opute thef; measure for the average and median traces.
timating the true location of the centerline pixels, and 3) tH& terms of the recall and precision estimates, themeasure
median tracing algorithm is superior to the average tracing &lefined in (7) can be rewritten as
gorithm, especially in low-quality images. o= 2046 ag; (10)
Manual Versus AutomaticFirst we compare manual traces 1= aic + agi
and automatic traces against the ground truth with respectyigis aliows us to calculate thg, (ROC) curves for each image
the percentage of inliers at different disk sizes. This is illusg 4 function of the inlier distance threshéldThe F, values
trated in Fig. 7(b) for high-contrast images and in Fig. 7(d) f{§ptained usingy = 3 are listed in Table 11 for the ten high
low-contrast images. For instance, the curve correspondingciéhirast images as well as the five low contrast images. Table Il
the manual traces in Fig. 7(b) was generated by 1) computing g,y illustrates the superiority of the median tracing algorithm
percentage of inliers points of each of t_he manual traces with (7er the average algorithm, especially in low contrast images.
spect to the ground truthi;, and 2) taking the average over allrys js clearly illustrated by the last row in Table II, which lists

traces at each disk radius valdeClearly, the manual traces argpq averagd, values obtained over all high- and low-contrast
superior to the automatic traces in both low- and high-contrqﬁ{ages'

images, with the average-tracing algorithm being much worst
for the low-contrast images. This is because human tracers are
less likely to trace the background (i.e., overtrace) or miss en-
tire or parts of segments (i.e., under-trace), and the ground trutn this work, we have presented fully automatic algorithms
itself is established by manual traces. Therefare,conclude for tracing of neurons from digital images. The algorithms are
that manual traces are superior in detecting more segments aiagt, hence they are appropriate for large scale applications.
avoiding background tracesiowever, this does not mean thailThey are also accurate and robust against image artifacts such
manual traces are more accurate, in other words that they hasdow contrast, and apparent discontinuities and/or hollowness
low discrepancy. This is because accuracy is a function of erafr structures. This work extends our earlier work [8], [13]

VIIl. SUMMARY AND CONCLUSIONS
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by presenting the median kernel response, a view of kernefe]
responses that is different from the traditional correlation-like
views. The superiority of this new kernel-response method
was established quantitatively using ROC-like curves and[7]
is supported by our results [48] obtained from thousands of
imagest Some examples are shown in Fig. 8. This new and (8]
novel view of kernel-responses may prove useful in other
kernel-based tracing algorithms. We have also presented a set
of methods for establishing ground truth and for validating the [g;
tracing algorithms.

The median-based tracing requires a slightly higher computa-
tional cost than the average-based tracing, but the algorithm aygy,
still fast enough for the applications of interest, since only a frac-
tion of a second is added to the computing times. Overall, thg 1]
median-based algorithm is still much faster compared to manu ]l
tracing. The robustness and efficiency of the proposed method
makes it attractive for large-scale applications such as higH—lZ]
throughput assays, and the Human Brain Project [43]. They are
especially valuable when live specimens are being imaged. Aii3]
application of direct interest to us is the detection and quantifi-
cation of morphological changes caused by a variety of bio-
chemical and physiological agents, disease and trauma. Al§t4]
of interest are attempts to simulate computationally the electro-
chemical behavior of large collections of neurons [44] for which[15)
actual, rather than simulated, neuro-anatomical data, would be
valuable. [16]

In our earlier work [13] we presented algorithms for tracing
neurons in 3-D volumetric images. Currently, we are extending
the median-based tracing method described here to 3-D imagﬁgl
of neurons and tumor vasculature in support of angiogenesis
studies.
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