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Abstract. We show that the complexity of the recently introduced
medoid-shift algorithm in clustering N points is O(N?), with a small
constant, if the underlying distance is Euclidean. This makes medoid
shift considerably faster than mean shift, contrarily to what previously
believed. We then exploit kernel methods to extend both mean shift
and the improved medoid shift to a large family of distances, with com-
plexity bounded by the effective rank of the resulting kernel matrix, and
with explicit regularization constraints. Finally, we show that, under cer-
tain conditions, medoid shift fails to cluster data points belonging to the
same mode, resulting in over-fragmentation. We propose remedies for this
problem, by introducing a novel, simple and extremely efficient clustering
algorithm, called quick shift, that explicitly trades off under- and over-
fragmentation. Like medoid shift, quick shift operates in non-Euclidean
spaces in a straightforward manner. We also show that the accelerated
medoid shift can be used to initialize mean shift for increased efficiency.
We illustrate our algorithms to clustering data on manifolds, image seg-
mentation, and the automatic discovery of visual categories.

1 Introduction

Mean shift [9, 3, 5] is a popular non-parametric clustering algorithm based on the
idea of associating each data point to a mode of the underlying probability den-
sity function. This simple criterion has appealing advantages compared to other
traditional clustering techniques: The structure of the clusters may be rather
arbitrary and the number of clusters does not need to be known in advance.
Mean shift is not the only “mode seeking” clustering algorithm. Other ex-
amples include earlier graph-based methods [13] and, more recently, medoid
shift [20]. Unlike mean shift, medoid shift extends easily to general metric spaces
(i.e. spaces endowed with a distance). In fact, mean shift is essentially a gradi-
ent ascent algorithm [3,5,24] and the gradient may not be defined unless the
data space has additional structure (e.g. Hilbert space or smooth manifold struc-
ture). While there have been recent efforts to generalize mean shift to non-linear
manifolds [21], medoid shift does not require any additional steps to be used on
curved spaces. Moreover, the algorithm is non-iterative and there is no need for a
stopping heuristic. Its biggest disadvantage is its computational complexity [20].
Depending on the implementation, medoid shift requires between O(dN? + N3)
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Fig.1l. Mode seeking algorithms. Comparison of different mode seeking algo-
rithms (Sect. 2) on a toy problem. The black dots represent (some of) the data points
z; € X C R? and the intensity of the image is proportional to the Parzen density esti-
mate P(z). Left. Mean shift moves the points uphill towards the mode approximately
following the gradient. Middle. Medoid shift approximates mean shift trajectories by
connecting data points. For reason explained in the text and in Fig. 2, medoid shifts
are constrained to connect points comprised in the red circles. This disconnects por-
tions of the space where the data is sparse, and can be alleviated (but not solved) by
iterating the procedure (Fig. 2). Right. Quick shift (Sect. 3) seeks the energy modes
by connecting nearest neighbors at higher energy levels, trading-off mode over- and
under-fragmentation.

and O(dN? 4+ N?238) operations to cluster N points, where d is the dimension-
ality of the data. On the other hand, mean shift is only O(dN?T), where T
is the number of iterations of the algorithm, and clever implementations yield
dI' < N.

Contributions. In this paper we show that the computational complexity of
Euclidean medoid shift is only O(dN?) (with a small constant), which makes it
faster (not slower!) than mean shift (Sect. 3). We then generalize this result to
a large family of non-Euclidean distances by using kernel methods [18], showing
that in this case the complexity is bounded by the effective dimensionality of
the kernel space (Sect. 3). Working with kernels has other advantages: First, it
extends to mean shift (Sect. 4); second, it gives an explicit interpretation of non-
Euclidean medoid shift; third, it suggests why such generalized mode seeking
algorithms skirt the curse of dimensionality, despite estimating a density in
complex spaces (Sect. 4). In summary, we show that kernels extend mode seeking
algorithms to non-Euclidean spaces in a simple, general and efficient way.

Can we conclude that medoid shift should replace mean shift? Unfortunately,
not. We show that the weak point of medoid shift is its inability to identify
consistently all the modes of the density (Sect. 2). This fact was addressed
implicitly by [20] who reiterate medoid shift on a simplified dataset (similar
to [2]). However, this compromises the non-iterative nature of medoid shift and
changes the underlying density function (which may be undesirable). Moreover,
we show that this fix does not always work (Fig. 2).
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We address this issue in two ways. First, we propose using medoid shift to sim-
plify the data and initialize the more accurate mean shift algorithm (Sect. 5.2 and
Sect. 5.3). Second, we propose an alternative mode seeking algorithm that can
trade off mode over- and under-fragmentation (Sect. 3). This algorithm, related

o [13], is particularly simple and fast, yields surprisingly good segmentations,
and returns a one parameter family of segmentations where model selection can
be applied.

We demonstrate these algorithms on three tasks (Sect. 5): Clustering on a
manifold (Sect. 5.1), image segmentation (Sect. 5.2), and clustering image sig-
natures for automatic object categorization (Sect. 5.3). The relative advantages
and disadvantages of the various algorithms are discussed.

2 Mode Seeking

Given N data points z1,...,zxy € X = R? a mode seeking clustering algorithm
conceptually starts by computing the Parzen density estimate

N
Z r—x;), xcR? (1)

where k(z) can be a Gaussian or other window.! Then each point x; is moved
towards a mode of P(x) evolving the trajectory y;(t), t > 0 uphill, starting from
¥;(0) = z; and following the gradient VP(y;(t)). All the points that converge to
the same mode form a cluster.

A mode seeking algorithm needs (i) a numerical scheme to evolve the tra-
jectories y;(t), (ii) a halting rule to decide when to stop the evolution and (iii)
a clustering rule to merge the trajectory end-points. Next, we discuss two algo-
rithms of this family.

Mean Shift. Mean shift [9,5] is based on an efficient rule to evolve the tra-
jectories y;(t) when the window k(z) can be written as 1 (||x||3) for a convex
function ¢ (z) (for instance the Gaussian window has (z) x exp(—=z)). The
idea is to bound the window from below by the quadric k(2') > k(z) + ([|2'[|5 —
12]13)%(|2]13). Substituting in (1) yields
1 :
P(y') = Py) + 5 p_(ly' = 25l = ly = 2150 (lly — =515, (2)
j=1

and maximizing this lower bound at y = y;(t) yields the mean-shift update rule

00 Pllys(t) — w3)a;
ZJ NMHZU%( - z;]13)

N
yi(t+1) = argmax Z ly — 25139 (ly: (1) —25112) = - (3)

! The term “kernel” is also used in the literature. Here we use the term “window” to
avoid confusion with the kernels introduced in Sect. 3.



4 A. Vedaldi and S. Soatto

If the profile ¥(z) is monotonically decreasing, then P(y;(t)) < P(y;(t + 1)) at
each step and the algorithm converges in the limit (since P is bounded [5]). The
complexity is O(dN?T), where d is the dimensionality of the data space and T is
the number of iterations. The behavior of the algorithm is illustrated in Fig. 1.

Medoid Shift. Medoid shift [20] is a modification of mean shift in which the
trajectories y;(t) are constrained to pass through the points z;, i = 1,..., N.
The advantage of medoid shift are: (i) only one step y;(1), ¢ = 1,..., N has to
be computed for each point z; (because y;(t + 1) = y,, (1)), (ii) there is no
need for a stopping/merging heuristic (as these conditions are met exactly), and
(iii) the data space X may be non-Euclidean (since to maximize (4) there is no
need to compute derivatives). Eventually, points are linked by steps into a forest,
with clusters corresponding to trees. The algorithm is illustrated in Fig. 1.

According to [20], the main drawback of medoid shift is speed. In fact, max-
imizing (3) restricted to the dataset amounts to calculating

N
1 .
i) = argmax > d*(y, 2;)0(d (x, 7)) (4)
ye{z1,..., TN} j=1
where d?(z,y) = || — y||3 in the Euclidean case. A basic implementation re-

quires O(N® + dN?) operations, assuming O(d) operations to evaluate d*(z,y).
However, by defining matrices Dy; = d*(xy, ;) and Fy; = ¢(Dix)/N, we can
rewrite (4) as

N
y;(1) = argmax Z Dy;Fj; = argmax e, DFe; (5)
k=1,...N 3 k=1,...,N

where e; denotes the i-th element of the canonical basis.? As noted in [20],
O(N?:38) operations are sufficient by using the fastest matrix multiplication
algorithm available. Unfortunately the hidden constant of this algorithm is too
large to be practical (see [12], pag. 501). Thus, a realistic estimate of the time
required is more pessimistic than what suggested by the asymptotic estimate
O(dN? + N%38),

Here we note that a more delicate issue with medoid shift is that it may fail
to properly identify the modes of the density P(x). This is illustrated in Fig. 2,
where medoid shift fails to cluster three real points —1,+1 and +1/2, finding
two modes —1 and +1 instead of one. To overcome this problem, [20] applies
medoid shift iteratively on the modes (in the example —1 and +1). However, this
solution is not completely satisfactory because (i) the underlying model P(x) is
changed (similarly to blurry mean shift [9, 3]) and (ii) the strategy does not work
in all cases (for instance, in Fig. 2 points —1 and +1 still fail to converge to a
single mode).

Finally, consider the interpretation of medoid shift. When X is a Hilbert
space, medoid (and mean) shift follow approximately the gradient of the density

? For instance ez = [010 ...O]T.
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Fig. 2. Medoid shift over-fragmentation. Left. We apply medoid shift to cluster
points —1,+1,+1/2 € R using a Gaussian window of variance 0 = 1 (dashed green
lines). The density P(z) (red curve; Sect. 2) has a single mode, but medoid shift fails
to move the point —1 towards the mode (i.e. y—1(1) = —1). The reason is that the
quadratic lower bound (2) (blue curve) is larger at —1 than it is at +1 or +1/2. Notice
that mean shift would have moved —1 towards the mode by a small, but finite amount,
eventually extracting the single mode. Right. The problem is not solved even if medoid
shift is reiterated [20] on the two modes —1 and +1 (where +1 has double mass), even
if the density P(z) does become blurrier [2,20].

P(z) (by maximizing the lower bound (3)). The gradient depends crucially on
the inner product and corresponding metric defined on X', which encodes the cost
of moving along each direction [22]. For general metric spaces X, the gradient
may not be defined, but the term d?(z,y) in (4) has a similar direction-weighing
effect. In later sections we will make this connection more explicit.

3 Fast Clustering

Faster Euclidean Medoid Shift. We show that the complexity of Euclidean
medoid shift is only O(dN?) (with a small constant) instead of O(dN? + N2-3%)
(with a large constant) [20]. Let X = [z1... 2] be the data matrix. Let
n = (X7 ® XT)1 be the vector of the squared norms of the data, where 1
denotes the vector of all ones and ® the Hadamard (component wise) matrix
product. Then we have

D=1n"+n1" —2X'X, DF=n(1"F)+1(n'F)-2X"(XF). (6)

The term 1(n'F) has constant columns and is irrelevant to the maximiza-
tion (5). Therefore, we need to compute

DFxn(1"F)-2XT(XF), n=X"ToXNHN=IoX"X)1 (7

where I is the identity matrix.? It is now easy to check that each matrix product
in (7) requires O(dN?) operations only.

3 And we used the fact that (I ® AB)1 = (B ® A)1.
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Kernel Medoid Shift. An advantage of medoid shift is the possibility of com-
puting (4) for distances d?(z,y) other than the Euclidean one [20]. The decom-
position (6) can still be carried out if the distance d?(z,y) can be expressed as
K(x,z) + K(y,y) — 2K (z,y) for an appropriate positive definite (p.d.) kernel*
K [18]. Then we have D = 1n" +n1" — 2K, and

DF «xn(1'F)-2KF, n=(I0K)1.

Unfortunately, the multiplication K F is still O(N?8). However, we can search
for a low-rank decomposition GTG of K (we assume, without loss of generality,
that K is centered®). If G is a decomposition of rank d, then

DF xn(1"F)-2G(GTF), n=I60G"G)1=(G oG

can still be computed in O(dN?) operations. The cost of decomposing K is
typically around O(d?N) [8,1]. See Fig. 3 for a basic implementation.

Quick Shift. In order to seek the mode of the density P(x), it is not necessary
to use the gradient or the quadratic lower bound (2). Here we propose quick
shift, which simply moves each point x; to the nearest neighbor for which there
is an increment of the density P(z). In formulas,

N
yz(l) = argmin Dij7 R = % Z ¢(D”) (8)
j:Pj>P; J=1
Quick shift has four advantages: (i) simplicity; (ii) speed (O(dN?) with a small
constant); (iii) generality (the nature of D is irrelevant); (iv) a tuning parameter
to trade off under- and over-fragmentation of the modes. The latter is obtained
because there is no a-priori upper bound on the length D;; of the shifts y;(0) —
yi(1). In fact, the algorithm connects all the points into a single tree. Modes
are then recovered by breaking the branches of the tree that are longer than a
threshold 7. Searching 7 amounts to performing model selection and balances
under- and over-fragmentation of the modes. The algorithm is illustrated in

Fig. 1.
Quick shift is related to the classic algorithm from [13]. In fact, we can
rewrite (8) as

P —P

yi(1) = argmax sign(Fy = F1) and compare it to y;(1) = argmax D 9)
ij

s
j=1,...,N Dij grd(zj,xs)<T

4 The kernel K should not be confused with the Parzen window k(z) appearing in (1).
In the literature, it is common to refer to the Parzen window as “kernel”, but in most
cases it has rather different mathematical properties than the kernel K we consider
here. An exception is when the window is Gaussian, in which cases k(d*(x,y)) is a
p-d. kernel. In this case, we point out an interesting interpretation of mean shift as
a local optimization algorithm that, starting from each data point, searches for the
pre-image of the global data average computed in kernel space. This explains the
striking similarity of the mean shift update Eq. (3) and Eq. (18.22) of [19].

K is centered if K1 = 0. If this is not the case, we can replace K by K' = HKH,
where H = 1 — 11T/N is the so-called centering matriz. This operation translates
the origin of the kernel space, but does not change the corresponding distance.

ot
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as given by [13]. Notice that (P; — P;)/D;; is a numerical approximation of the
gradient of P in the direction x; — x;. The crucial difference is that maximizing
the gradient approximation must be done in a neighborhood of each point defined
a-priori by the choice of the parameter 7. Thus, model selection in [13] requires
running the algorithm multiple times, one for each value of 7. In contrast, quick
shift returns at once the solutions for all possible values of 7, making model
selection much more efficient.

4 Cluster Refinement

In the previous section we introduced fast kernel medoid shift as an accelerated
version of non-Euclidean medoid shift. Since medoid shift may over-fragment
modes, quick shift was then proposed as a method to control under- and over-
fragmentation by the choice of a parameter 7. No algorithm, however, guarantees
the same accuracy of the slower mean shift.

It is then natural to ask whether mean shift could be extended to work in a
non-Euclidean setting. [20] cites the problem of defining the mean as the major
obstacle to this idea. [21] addresses this issue by defining mean shift vectors on
the tangent space of a non-linear manifold, but no proof of convergence is given,
and the applicability is limited by the fact that the data space needs to have a
manifold structure known analytically.

A simple solution to this problem is to extend kernel medoid to a correspond-
ing kernel mean shift procedure. Let K(-,-) be a p.d. kernel on the data space
X. Then K(xz,-) is an element of the so called reproducing kernel Hilbert space
H [19], whose inner product is defined by letting (K (z,-), K(y,))n = K(z,y).
Points z € R? are then identified with elements K (z,-) of the Hilbert space.
Given this identification, we can write (-, )y for (-, K(z,-))%.

Kernel mean shift computes a “density®” on H

Z\H

N
Z (d3,(y, z;)) yeH (10)

where d?,(z;,vy) = (y,y)n + (z;,2;)n — 2{y,x;)n. Notice that y € H, unlike
standard mean shift, does not belong necessarily to the data space X (up to
the identification x = K(«,-)). However, if k(z) is monotonically decreasing,
then maximizing w.r.t. y can be restricted to the linear subspace span, X =
spany{z1,...,2,} C H (if not, the orthogonal projection of y onto that space
decreases simultaneously all terms d%,(z;,y)).

Therefore, we can express all calculations relative to span,, X. In particular,
if K;; = K(x;, ;) is the kernel matrix, we have d?,(z;,y) = y' Ky + e;-rKej —
2ejTK y where e; is the j-th vector of the canonical basis and y is a vector of NV
coefficients. As in standard mean shift, the shifts are obtained by maximizing

5 The interpretation is discussed later.
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(KERNEL) MEAN SHIFT (KERNEL) MEDOID SHIFT
function Z = meanshift(G, sigma) function map = medoidshift(G, sigma)
[d,N] = size(G) ; [d,N] = size(G) ;
oN = ones(N,1) ; oN = ones(N,1) ;
od = ones(d,1) ; od = ones(d,1) ;
n = (G’ .*G’)*od ; n = (G’ .*G’)*od ;
Z=0G; D = n*oN’ + oN*n’ - 2x(G’*G) ;
T = 100 ; F = - exp(- .5 *x D’ / sigma~2) ;
for t=1:T Q =n * (oN’*F) - 2 * G’ * (G*F) ;
m = (Z’.%Z’)*od ;
D = m*oN’ + oN*n’ - 2x(Z’*G) ; [drop,map] = max(Q) ;
F = - exp(- .56 * D’ / sigma”2) ;
Y =F ./ (oN * (oN’4F)) ;
Z = GxY ;
end

Fig. 3. Kernel mean and medoid shift algorithms. We show basic MATLAB
implementations of two of the proposed algorithms. Here K = G' G is a low-rank
decomposition G € R*Y of the (centered) kernel matrix and sigma is the (isotropic)
standard deviation of the Gaussian Parzen window. Both algorithms are O(dN?) (for
a fixed number of iterations of mean shift), reduce to their Euclidean equivalents by
setting G = X and Z =Y, and can be easily modified to use the full kernel matrix K
rather than a decomposition G G (but the complexity grows to O(N®)).

the lower bound
N

yi(t +1) = argmax » (y' Ky + e Ke; — 2¢] Ky)o(dF (x5, vi(1)))-

yeRN

Deriving w.r.t. y and setting to zero yields the update equation

1 .
yi(t+1) = W(Fei); Fji = ¢(Dij), Dij = dF,(yi(t),x;).  (11)

Low-rank approximation. Similarly to medoid shift, we can accelerate the
algorithm by using a low-rank decomposition K = G TG of the (centered) ker-
nel matrix. It is useful to switch to matrix notation for all the quantities. Let
Y = [yl, yM] be the trajectory matrix and define Z = GY the reduced
coordinates.” The distance matrix D can be written compactly as

D=ml"+1n" —2Y TK=m1" +1n" —227G;
where
m=Y" oY KN1=Z"02Z")1, n=I0K)1=(G"'oG")1.

At each iteration D is calculated in O(dN?) operations. Then F = ¢(DT)/N
is evaluated component-wise. Finally the trajectories Y (or equivalently Z) are
updated by

Y « Fdiag(F1)™!, 7Z — GY.

" Similarly, the data matrix X has reduced coordinates equal to G.
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in O(N?) operations. Notice that, by setting G = X and Z =Y in these equa-
tions, we obtain Euclidean mean shift back. See Fig. 3 for a basic implementation.

Interpretation, Regularization and Scaling. In Euclidean mean shift the
function P(z) is a non-parametric estimate of a probability density. Does the
same interpretation hold in kernel space? For any fixed data set of size N, we can
restrict our attention to the subspace space spany, X C H and interpret P(z) as
a probability density on this finite-dimensional space. Unfortunately, the num-
ber of dimensions of this space may be as large as the number of data points IV,
which makes the Parzen density estimate P(z) inconsistent (in the sense that
the variance does not converge to zero as N — c0). So how do we make sense
of kernel mean shift? The idea is to use the fact that most of the dimensions
of spany, X are often unimportant. Formally, consider the eigen-decomposition
K=VXVT =GTG, G =X2VT of the (centered) kernel matrix K. Assume
Y: = N diag(o1,...,0n), with o1 > 09 > -+ > on. According to this decompo-
sition, vectors z,y € spany, X can be identified with their coordinates g, z € RN
so that (z,y),, = (g,%). Moreover the data matrix G = [gl gn] has null
mean® and covariance GG /N = X /N = o2 diag()\?,...,\%). If \; decay fast,
the effective dimension of the data can be much smaller than N.

The simplest way to regularize the Parzen estimate is therefore to discard
the dimensions above some index d (which also improves efficiency). Another
option is to blur the coordinates z by adding a small Gaussian noise 7 of isotropic
standard deviation €, obtaining a regularized variable z’ = z+n. The components
of z with smaller variance are “washed out” by the noise, and we can obtain a
consistent estimator of z’ by using the regularized Parzen estimate Zil\il(g€ *
k)(z;) (the same idea is implicitly used, for instance, in kernel Fisher discriminant
analysis [15], where the covariance matrix computed in kernel space is regularized
by the addition of €2I). This suggests that using a kernel with sufficient isotropic
smoothing may be sufficient.

Finally, we note that, due to the different scalings A1,..., Ay of the linear
dimensions, it might be preferable to use an adapted Parzen window, which
retains the same proportions [17]. This, combined with the regularization e,
suggests us to scale each axis of the kernel by \/02A\? + 2.9

8 Because K is assumed to be centered, so that 17T G'T(G1) =1" K1 =0.

9 So far we disregarded the normalization constant of the Parzen window k(z) as it
was irrelevant for our purposes. If, however, windows k. (x) of variable width o are
used [6], then the relative weights of the windows become important. Recall that in
the d dimensional Euclidean case one has ky(0)/ko/(0) = (0//0)?. In kernel space
therefore one would have
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Fig. 4. Clustering on a manifold. By using kernel ISOMAP we can apply kernel
mean and medoid shift to cluster points on a manifold. For the sake of illustration,
we reproduce an example from [20]. From left to right: Kernel mean shift (7.8s), non-
iterated kernel medoid shift (0.18s), iterated kernel medoid shift (0.48s), quick shift
(0.12s). We project the kernel space to three dimensions d = 3 as the residual dimen-
sions are irrelevant. All algorithms but non-iterated medoid shift segment the modes
successfully. Compared to [20], medoid shift has complexity O(dN?), (with a small con-
stant and d = 3 < N) instead of O(N?) (small constant) or O(N?-*®) (large constant)

5 Applications

5.1 Clustering on Manifolds

[20] applies medoid shift to cluster data on manifolds, based on the distance
matrix D calculated by ISOMAP. If the kernel matrix K = HDH'/2, H =

— %IIT is p.d., we can apply directly kernel mean or medoid shift to the same
problem. If not, we can use the technique from [4] to regularize the estimate and
enforce this property. In Fig. 4 this idea is used to compare kernel mean shift,
kernel medoid shift and quick shift in a simple test case.

5.2 Image Segmentation

Image segmentation is a typical test case for mode seeking algorithms [5, 16, 20].
Usually mode seeking is applied to this task by clustering data {(p, f(p)),p € 2},
where p € 2 are the image pixels and f(p) their color coordinates (we use the
same color space of [5]).

As in [5], we apply mean shift to segment the image into super-pixels (mean
shift variants can be used to obtain directly full segmentations [2,16,24]). We
compare the speed and segmentation quality obtained by using mean shift,
medoid shift, and quick shift (see Fig. 5 for further details).

Mean shift is equivalent to [5] and can be considered a reference to eval-
uate the other segmentations. Non-iterative medoid shift (first column) over-
fragments significantly (see also Fig. 2), which in [20] is addressed by reiterating
the algorithm. However, since our implementation is only O(dN?), medoid shift
has at least the advantage of being much faster than mean shift, and can be used
to speed up the latter. In Fig. 5 we compare the time required to run mean shift
from scratch and from the modes found by medoid shift. We report the speedup
(as the number of modes found by medoid shift over the number of pixels), the
computation time of medoid+mean shift and, in brackets, the computation time
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MEDOID

37,55 (34.05)

33.45 (26.35)

Fig. 5. Image segmentation. We compare different mode seeking techniques for seg-
menting an image (for clarity we show only a detail). We report the computation time
in seconds (top-right corner of each figure). In order to better appreciate the intrin-
sic efficiency advantages of each method, we use comparable vanilla implementations
of the algorithms (in practice, one could use heuristics and advanced approximation
techniques [23] to significantly accelerate the computation). We use a Gaussian kernel
of isotropic standard deviation o in the spatial domain and use only one optimization:
We approximate the support of the Gaussian window by a disk of radius 3¢ (in the
spatial domain) which results in a sparse matrix F. Therefore the computational effort
increases with o (top to bottom). The results are discussed in the text.

of the mean shift part only. Interestingly, the efficiency increases for larger o, so
that the overall computation time actually decreases when o is large enough.

Finally, we show the result of quick shift segmentation (last two columns)
for increasing values of the regularization parameter 7. Notice that quick shift
is run only once to get both segmentations (Sect. 3) and that the algorithm
is in practice much faster than the other two, while still producing reasonable
super-pixels.

5.3 Clustering Bag-of-Features

The interesting work [11] introduces a large family of positive definite kernels
for probability measures which includes many of the popular metrics: x2 kernel,
Hellinger’s kernel, Kullback-Leibler kernel and {! kernel. Leveraging on these
ideas, we can use kernel mean shift to cluster probability measures, and in par-
ticular histograms, such as the ones arising in bag-of-features [7] or similar rep-
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Algorithm |Scal.Rate [%]|Time [s]
mean no 93.9 29.9
mean yes 94.6 89.0
mean+medoid| no 93.9 3.63
mean+medoid| yes 94.5 6.28
quick no 96.3 0.62
quick yes 96.1 0.70

T

iy

Fig. 6. Automatic visual categorization. We use kernel mean shift to cluster bag-
of-features image descriptors of 1600 images from Caltech-4 (four visual categories:
airplanes, motorbikes, faces, cars). Top. From left to right, iterations of kernel mean
shift on the bag-of-features signatures. We plot the first two dimensions of the rank-
reduced kernel space (z vectors) and color the points based on the ground truth labels.
In the rightmost panel the data converged to five points, but we artificially added
random jitter to visualize the composition of the clusters. Bottom. Samples from the
five clusters found (notice that airplane are divided in two categories). We also report
the clustering quality, as the percentage of correct labels compared to the ground truth
(we merge the two airplanes categories into one), and the execution time. We use basic
implementations of the algorithms, although several optimizations are possible.

resentations. In the rest of the section we experiment with the y? kernel

B

ToYp
K, »(x, :25 —_—
X( Y) b:1$b+yb

where x and y are histograms of B bins.

Inspired by [10], we attempt to automatically infer the object categories of
Caltech-4 in a completely unsupervised setting. We select at random 1600 im-
ages from the categories bike, airplanes, cars and faces. Instead of the more
sophisticated representation of [10], we compute a basic bag-of-feature image
representation as suggested by [25]: We extract multiscale Harris and DoG in-
terest points (of fixed orientation; see [25] and ref. therein) and calculate SIFT
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descriptors [14], obtaining about 10 features per image. We then generate a vo-
cabulary of 400 visual words by clustering a random selection of such descriptors
by using k-means. For each image, we compute a bag-of-feature histogram x by
counting the number of occurrences of each visual word in that image. Finally,
we use the x2 kernel to generate the kernel matrix, that we feed to our clustering
algorithms.

In Fig. 6 we compare kernel mean shift, kernel mean shift initialized by
medoid shift, and quick shift. The problem we solve is considerably harder
than [10], since in our case the number of clusters (categories) is unknown. All
algorithms discover five (rather than four) categories (Fig. 6), but the result is
quite reasonable since the category airplanes contains two distinct and visually
quite different populations (grounded and airborne airplanes). Moreover, com-
pared to [10] we do not try to explicitly separate an object from its background,
but we use a simple holistic representation of each image.

The execution time of the algorithms (Fig. 6) is very different. Mean shift
is relatively slow, at least in our simple implementation, and its speed greatly
improves when we use medoid shift to initialize it. However, consistently with
our image segmentation experiments, quick shift is much faster.

We also report the quality of the learned clusters (after manually merging the
two airplane subcategories) as the percentage of correct labels. Our algorithm
performs better than [10], that uses spectral clustering and reports 94% accuracy
on selected prototypes and as low as 85% when all the data are considered; our
accuracy in the latter case is at least 94%. We also study rescaling as proposed in
Sect. 4, showing that it (marginally) improves the results of mean/medoid shift,
but makes the convergence slower. Interestingly, however, the best performing
algorithm (not to mention the fastest) is quick shift.

6 Conclusions

In this paper we exploited kernels to extend mean shift and other mode seeking
algorithms to a non-Euclidean setting. This also clarifies issues of regularization
and data scaling when complex spaces are considered. In this context, we showed
how to derive a very efficient version of the recently introduced medoid shift
algorithm, whose complexity is lower than mean shift. Unfortunately, we also
showed that medoid shift often results in over-fragmented clusters. Therefore,
we proposed to use medoid shift to initialize mean shift, yielding a clustering
algorithm which is both efficient and accurate.

We also introduced quick shift, which can balance under- and over-frag-
mentation of the clusters by the choice of a real parameter. We showed that,
in practice, this algorithm is very competitive, resulting in good (and sometimes
better) segmentations compared to mean shift, at a fraction of the computation
time.
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