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Abstract The Gradient Vector Flow (GVF) is a feature-

preserving spatial diffusion of gradients. It is used exten-

sively in several image segmentation and skeletonization

algorithms. Calculating the GVF is slow as many iterations

are needed to reach convergence. However, each pixel or

voxel can be processed in parallel for each iteration. This

makes GVF ideal for execution on Graphic Processing

Units (GPUs). In this paper, we present a highly optimized

parallel GPU implementation of GVF written in OpenCL.

We have investigated memory access optimization for

GPUs, such as using texture memory, shared memory and a

compressed storage format. Our results show that this

algorithm really benefits from using the texture memory

and the compressed storage format on the GPU. Shared

memory, on the other hand, makes the calculations slower

with or without the other optimizations because of an

increased kernel complexity and synchronization. With

these optimizations our implementation can process 2D

images of large sizes (5122) in real-time and 3D images

(2563) using only a few seconds on modern GPUs.
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1 Introduction

The Gradient Vector Flow (GVF) is a feature-preserving

spatial diffusion of gradients. The GVF field is defined as

the vector field V; that minimizes the energy function E:

EðVÞ ¼
Z

ljrVðxÞj2 þ jV0ðxÞj2jVðxÞ � V0ðxÞj2dx ð1Þ

where V0 is the initial vector field.

The GVF was introduced by Xu and Prince [11] as a

new external force field for active contours (AC). Also

known as snakes or deformable models, AC are curves that

move in an image while trying to minimize its energy and

are used extensively for boundary detection and segmen-

tation. The traditional snake introduced by Kass et al. [8]

has the problem of getting stuck in boundary concavities

and low capture range. The GVF snake can deal with these

problems.

Figure 1 depicts the GVF when used for active contours.

The initial image shown top-right is an image smoothed by

convolution with a Gaussian. Next is the initial vector field

V0 displayed using vector magnitude in the top row and the

vectors in a zoomed region below. The next column shows

the GVF field after 10 iterations of diffusion and the last

column 400 iterations.

After its introduction, the GVF has been applied on

several other image processing applications. Bauer and

Bischof [2] developed a novel approach to use the GVF as

a replacement for the scale-space framework in Hessian-

based tube detection. Hassouna and Farag [6] and Bauer

and Bischof [3] used the GVF to extract skeletons from

objects. Ray and Acton [10] used GVF to track leukocytes

from intravital video microscopy. Guo and Lu [4] argued

that GVF combined with Mutual Information can improve

multi-modal image registration.
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Xu and Prince [11] showed that the GVF field can be

found by solving the Euler equation:

lr2VðxÞ � ðVðxÞ � V0ðxÞÞjV0ðxÞj2 ¼ 0: ð2Þ

This is done by treating the vector field V as a function of

time. Calculating the GVF field serially using this numer-

ical approach is slow due to the need for many iterations to

reach convergence. However, since each pixel is calculated

independently of the other pixels, each pixel can be pro-

cessed in parallel with the exact same instructions for each

iteration. This data parallelism makes the GVF ideal for

running on Graphic Processing Units (GPUs). GPUs enable

execution of the same instructions on many different data

elements in parallel.

He and Kuester [7] presented a GPU implementation

of GVF and Active Contours using OpenGL Shading

Language (GLSL). They reported that their GPU imple-

mentation was up to 4 times faster than a CPU imple-

mentation. Their implementation was for 2D images only

and used the texture memory system to speed up data

retrieval. Performance result for only one NVIDIA GPU

was presented. Also, Han et al. [5] proposed another serial

numerical scheme for GVF using a multigrid method. Their

results showed significant improvement in speed.

In this paper, we present an optimized parallel GVF

implementation written in OpenCL. OpenCL is a new

cross-platform framework for writing applications that can

run on heterogeneous systems. In contrast to the work of

He and Kuester [7], we investigate three different memory

optimization techniques for GPUs instead of just using the

texture memory. We also discuss 3-dimensional GVF and

show results for both GPUs and multi-core CPUs from

different manufacturers.

In the next section, we show how GVF can be imple-

mented in parallel and note that the algorithm is memory

intensive. We also present three memory usage optimiza-

tions for GPUs: texture memory, shared memory and a

16-bit floating point data type for storage. Section 3 pre-

sents performance results for each optimization in terms of

both speed and memory usage. An analysis of the accuracy

of the 16-bit floating point data type is also conducted.

Section 4 provides a discussion of the presented results and

the last section conclusions.

2 GPU implementation

The parallel version of the numerical implementation of

GVF by Xu and Prince [11] is given in Algorithm 1 and for

3D in Algorithm 2. The Laplacian r2VðxÞ is calculated

using a finite difference method. On the boundaries of the

image, some of the neighboring points required to calculate

the Laplacian, will not exist. This can be solved by

expanding the image with 1 pixel in all directions and have

the same vector on the border as the third outermost pixel

as depicted in Fig. 2. The gradient at the original border

will then be 0. In practice, this is done by swapping the x, y

or z components in the read address to 2 if it is 0 and to

M-2 if it is M, where M is the size of that dimension.

From these pseudocodes, we can see that calculating the

GVF needs 6 global memory accesses for 2D and 8 for 3D

and about 20 ALU operations. The GVF computation is

memory-bound because global memory access can have a

latency of several hundred clock cycles while the ALU

operations are only a small fraction of this [1]. Thus, in this

project, we have focused on optimizing memory access and

storage.

The unoptimized GPU implementation uses regular

global memory with a 32-bit floating point storage format.

Fig. 1 Example of GVF execution. From left to right top 1 smoothed

image, 2 magnitude of image gradients V0, 3 magnitude of GVF after

10 iterations, 4 magnitude of GVF after 400 iterations. Bottom 1

zoomed area of smoothed image 2, 3 and 4 image gradients

superimposed on zoomed image after 0, 10 and 400 iterations
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In this article, we explore using texture memory as an

alternative to global memory as well as shared memory in

combination with texture and global memory. We also use

a compressed 16-bit floating point storage format with each

of these 4 memory combinations as an alternative to the

default 32-bit format. Thus in total, we test eight different

memory optimization combinations on the GPU.

2.1 Texture memory

The default memory on GPUs is called global memory.

This memory is not always cached (for AMD GPUs, global

memory caching has to be enabled explicitly). When

caching is enabled, it only has linear spatial locality. Most

modern GPUs also have a separate texture memory system.

Textures are 1D, 2D or 3D structures that can be addressed

based on coordinates. GPUs have this texture memory

system because GPUs are primarily used for 3D applica-

tions where textures are mapped to 3D objects to create a

more realistic 3D scene. The textures are stored off-chip,

but are cached and have spatial locality in multiple

dimensions. When working with images and volumes this

cache with 2D/3D spatial locality can increase cache hits.

In the GVF calculations, there are two 2D/3D structures:

the GVF field V and the initial vector field V0: We optimize

our implementation by putting both of these data structures

in textures. In OpenCL, textures are called images, and an

image bound to a kernel can only be either read or written to.

This is a limitation needed to assure cache coherency. Since

the GVF vector field V has to be both read and written, we

have used a double buffering mechanism.

By creating two textures for the GVF field V; we use

one texture for writing and one for reading, and after each

iteration we swap the textures in the arguments to the

kernel.

The handling of the boundaries as depicted in Fig. 2 can

be handled automatically by the texture system using the

addressing flag ADDRESS_CLAMP_TO_EDGE. With this

flag set, pixels requested outside of the texture will use the

pixel value closest to the request pixel.

In OpenCL, writing to a 3D texture is an optional

extension called cl_khr_3d_image_writes. AMD supports

it while NVIDIA does not. To support 3D GVF calculation

on NVIDIA GPUs we created a separate kernel for these

devices that uses global memory instead of textures for V:

Since global memory only have linear spatial cache

locality, this is expected to reduce the number of cache

hits.

2.2 Shared memory

Shared memory is an on-chip memory that is shared among

all work items in a work group. This memory is reported by

GPU manufacturers to be more than 10 times faster than

global memory which is off-chip [1, 9]. It is generally

beneficial to use shared memory when several work items

need the same data from global memory as their neigh-

boring work items.

When calculating the Laplacian, r2VðxÞ; the data from

the 4 (or 6 for 3D) closest neighboring pixels are needed. If

N is the total number of pixels, there will be 5N global

memory accesses to V in total because each pixel is

requested 5 times. By using shared memory the number of

global memory accesses can be reduced significantly.

The input image is divided into a set of work groups as

shown in Fig. 3. Each work group process one tile of the

input image and allocates a block of shared memory with

the same size as the work group. Each work item in a work

group loads the pixel value from global memory and stores

it in shared memory. As the work items on the edges of the

work group will not have all their neighbor’s data in shared

memory, these work items will not do calculations, only

load data. These pixels are called the work group’s frame

and are calculated by their neighboring work groups. This

causes some overhead in terms of redundant global mem-

ory accesses and work items that are idle, but this is very

small compared to the overhead of 5N global memory

accesses to V:

Synchronization is necessary after writing to the shared

memory, because all work items in a work group are not

executed simultaneously (if a work group is above a certain

size). Work items in a work group can synchronize using a

barrier in the shared memory.

The shared memory is divided into several banks usually

16 or 32. Memory requests to different banks can be served

in parallel while memory requests to the same bank has to

be serialized. Requests to the same bank in a clock cycle is

called a bank conflict. These bank conflicts can be avoided

with a sequential access pattern.

Fig. 2 The top left corner of an image. The arrows indicate the

values the boundary pixels use
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2.3 16-bit float storage format

Memory access can also be improved by reducing the

number of bytes transferred from global memory to the chip.

The most common way to store a floating point number on a

computer, at present time, is by using 32 bits with the IEEE

754 standard. However, most GPUs also support a texture

storage format called normalized 16-bit integer. With this

format, the data is stored as 16-bit integers (shorts) in tex-

tures, but when it is requested, the texture fetch unit converts

the 16-bit integer to a 32-bit floating point number with a

normalized range from -1.0 to 1.0. This reduces accuracy,

and may not be sufficient for all applications. Due to the

reduced accuracy, the 16-bit storage format is made optional

in our implementation. This storage format also halves the

global memory usage, thus allowing much larger 3D vol-

umes to reside completely in the GPU memory.

2.4 Work-group sizes

Work items are executed on the GPU in groups. AMD calls

these units of execution wavefronts while NVIDIA calls

them warps. The units are executed atomically and has at

the time of writing the size of 32 or 64 work items. If the

work-group sizes are not a multiple of this size, some of the

GPUs stream processors will be idle for each work group

that is executed. There is also a maximum number of many

work items that can exists in one work group. On AMD

GPUs, this limit is currently 256 and on NVIDIA up to

1,024. In conjunction with shared memory, we want to

maximize the size of the work group minus the frame,

given this limit. For 2D, this is maximum when the work

group is 16 9 16 and for 3D, 8 9 8 9 4; e.g., an image of

size 512 9 512 would give 32 9 32 work groups of size

16 9 16. Also, in OpenCL, each dimension has to be

dividable by the work-group size. Thus, we pad the data so

that the size is dividable by the highest possible work

group. This avoids idle threads and branch divergence

while keeping a large work-group size.

3 Results

3.1 Speed

The speed of our implementation was measured using

OpenCL timers. Figure 4 shows the average execution time

of one iteration on an image of size 512 9 512 with dif-

ferent combinations of global, texture and shared memory

as well as 32- and 16-bit storage formats. This figure

clearly shows that using the texture memory is faster than

using regular global memory. Also, it illustrates that uti-

lizing shared memory slows down the computation and that

the 16-bit storage format is only beneficial when used

together with the texture memory. Figure 5 shows the

average total execution time for images of different sizes

for both 32- and 16-bit. In this figure, we notice that as the

image size increases, the execution time difference also

increases. All of these tests were run on an AMD Radeon

HD5870 with 1GB of memory.

Tables 1 and 2 includes the average execution time

measured both on 2D and 3D and on several different

GPUs and multi-core CPUs. For the GPUs only the texture

memory with the 16-bit storage format was used. For the

CPUs the same version was used, but with 32-bit instead.

From these two tables, we observe two things: (1) execu-

tion on GPUs is much faster than on CPUs; (2) while

NVIDIAs GPUs are comparable to AMDs GPUs on the 2D

dataset in terms of speed, NVIDIAs GPUs perform much

worse on the 3D dataset.

Fig. 3 The input image is divided into several work groups. The

green/dark area is the part of the work group that is calculated and the

box around is the frame where only data is loaded

Fig. 4 Average execution time for one iteration of a 512 9 512

image measured in milliseconds using OpenCL timers with both

32- and 16-bit storage format and different combinations of using

regular global memory, texture memory and shared memory
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3.2 Memory usage

Global synchronization is needed in each iteration when

calculating GVF in parallel. Because global synchroniza-

tion is not possible inside a kernel, a double buffering

mechanism is needed. This means that two copies of the

vector field V is needed in addition to the initial vector field

V0: The GPU implementation needs 2 vector components

(x and y) 9 3 vector fields 9 32 bits = 24 bytes per pixel

and 36 bytes per voxel for 3D volumes, because of the

additional z component. On the other hand, when using a

16-bit float storage format, the memory usage is halved. As

an example a volume of size 5123 would consume 4.5 GB

with the 32-bit data type and only 2.25 GB with the 16-bit

data type. Figures 6 and 7 graphs the memory usage for

this implementation for images and volumes for both 32

and 16-bit. Both figures depict the fact that the difference

in memory usage increases as the dataset size increases.

3.3 Relative accuracy

We measured the relative error between a 32 and a 16-bit

floating point data type on the final GVF vector field of the

512 9 512 image shown in Fig. 8. This was done by cal-

culating the GVF for each data type on the same image.

Relative error measures for both the magnitude and angle

were calculated as shown in Eqs. 3 and 4. From these

equations, the average, variance, maximum and minimum

were calculated for all pixels x and collected in Table 3.

Merror ¼ jjV16bitðxÞj � jV32bitðxÞjj ð3Þ

Fig. 5 Average execution time for 512 iterations of images of

different sizes using OpenCL timers with both 32- and 16-bit storage

format. The execution time difference between 32- and 16-bit storage

format increases with the size of the images

Table 1 Average execution speeds for a 2D image of size 512 9 512

run for 512 iterations

Processor One iteration (ms) All iterations (ms)

AMD 5870 0.035 28

AMD Mobile 5830 0.147 77

NVIDIA Quado FX5800 0.104 66

NVIDIA Tesla c2070 0.077 41

Intel i5 750 1.485 851

Intel i7 720 2.344 1,550

The first 4 processors are GPUs, while the rest are multi-core CPUs

Table 2 Average execution speeds for a 3D volume of size 2563 run

for 256 iterations

Processor One iteration (ms) All iterations (ms)

AMD 5870 4.501 1,124

AMD Mobile 5830 20.739 5,129

NVIDIA Quadro FX5800 105.631 2,7172

NVIDIA Tesla c2070 27.989 7,151

Intel i5 750 310.846 92,591

Intel i7 720 378.876 106,747

The first 4 processors are GPUs, while the rest are multi-core CPUs

Fig. 6 Memory usage in MBs versus size of image. Dimension size

x on the x axis is the size of one of the dimensions so that total number

of pixels is x2

Fig. 7 Memory usage in MBs versus size of volume. Dimension size

x on the x axis is the size of one of the dimensions so that total number

of voxels is x3
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herror ¼ cos�1 V16bitðxÞ � V32bitðxÞ
jV16bitðxÞjjV32bitðxÞj

� �
ð4Þ

4 Discussion

4.1 Speed

Figure 4 shows that introducing shared memory actually

makes the calculations slower. The reason for this is

threefold: the code is more complex, requires explicit

work-group synchronization and more threads/work items

are needed. Also, we notice that using the texture memory

on the GPU is much faster than using the global memory,

which is due to the 2D/3D caching.

This figure further shows that using the 16-bit storage

format without textures is slower than using the 32-bit

storage format. When the 16-bit format is used in con-

junction with textures on GPUs all the data type conver-

sions are done in hardware in the texture fetch units which

is much faster than doing the conversion in the code. With

CPUs using 32 bits is faster than 16 bits because although

the CPU supports texture structures in OpenCL, the CPU

does not have dedicated texture fetch units that can do the

data type conversion in hardware as GPUs do.

Also, we noticed from Tables 1 and 2 that NVIDIAs

GPUs performed much worse on the 3D dataset than

AMDs GPUs. The reason for this is that NVIDIA does not

support writing to 3D textures in their OpenCL imple-

mentation. Thus, global memory had to be used. This

memory, as we have explained earlier, is much slower than

the texture memory.

Figure 5 illustrates that the difference in execution time

between using 32- and 16-bit storage formats increases as

the image size increases. Thus the performance gain for

16-bit is biggest for large images and volumes, while for

very small images it is almost insignificant.

4.2 Memory usage

From the graph in Fig. 6, we can see that processing 2D

images of typical sizes is no problem with modern GPUs

that have 1GB memory and more. For 3D volumes a 1GB

graphics card would manage to process a dataset, without

any additional PCI express data transfer, of about 3003 and

3803 voxels for 32- and 16-bit data types, respectively.

4.3 Relative accuracy

Relative accuracy tests were performed to measure the

error by using the 16-bit storage format versus 32-bit. As

seen in Table 3 these tests showed that there was very little

error in magnitude, but on average around 30� angle error.

The high angle errors was found to only be present for the

very short vectors. In fact, the maximum magnitude of all

vectors with angle error above 0.1 was 9:15� 10�4 on the

512 9 512 MRI brain scan image. The size of the angle

error generally increases when the vector length decreases.

Thus, this angle error may not be problematic for most

applications. For instance, very short vectors will have very

little pulling force on a snake.

Still, the capture range of using the 16-bit format is

lower than 32-bit as seen in Fig. 9 where the resulting

vector field has been normalized. Thus, the 16-bit storage

format may not be sufficient for all applications.

5 Conclusions

In this paper, we presented a highly optimized parallel

GPU implementation of Gradient Vector Flow written in

OpenCL.1 Our implementation enables real-time execution

of GVF for images of sizes up to 5122 on modern GPUs.

Since it is written in OpenCL, it can also run efficiently on

multi-core CPUs. We investigated three different memory

optimizations for GPUs. Our results show that using the

texture memory with the 16-bit compressed floating point

storage format and without shared memory is fastest on

Fig. 8 The 512 9 512 MRI brain scan image the relative error

measurements have been run on

Table 3 Relative error of vector magnitude M and angle h from

32-bit to 16-bit floating point storage format

Merror herror

Average 0.00078 0.55

Variance 4.29e-7 0.59

Maximum 0.00377 3.14

Minimum 8.92e-10 0

Calculated using Eqs. 3 and 4 on the image in Fig. 8. Angles are in

radians

1 The source code of this implementation is available online at

http://www.github.com/smistad/OpenCL-GVF/.
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GPUs and can double the performance compared to an

unoptimized GPU implementation. Relative accuracy

measurements reveal that there is very little error in mag-

nitude, but a high angle error between the 32- and 16-bit

storage formats. However, the high angle errors are only

present on very small vectors, and thus may not be a

problem for most applications. The 16-bit storage format

has also the advantage of allowing much larger volumes to

reside completely in the limited memory on GPUs.
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