Use registers and multiple
outputs per thread on GPU

Occupancy is overrated

* [tis widely recommended to optimize for
higher occupancy

* Indeed, you can use higher occupancy to hide
arithmetic and memory latencies better

— But don’t have to!

* You can hide latencies keeping occupancy low

— Low occupancy has performance advantages

Hiding arithmetic pipeline latency

Latency of arithmetic instructions is =24 cycles

— Time between collecting operands and when result is
available

But throughput is 4 cycles per (SIMD) instruction
— 8 scalar instructions complete each cycle on each SM

— (here we are talking about “streaming processors”
only)

Thus, 24/4 = 6 SIMD instructions must be in the
flight, per SM

E.g. they may come from 6 warps (=192 threads)

Experimental setup

e Let’s check our hypotheses with experiments

1024 dependent instructions in a loop:

for(int i = 0; i < 1024*1024; i += 1024)
{
#pragma unroll
for(int 3 = 0; 7 < 1024; J++)
{
a =a* b+ c;

}

* How its performance varies under occupancy?

Performance vs. Occupancy

100% -

80% -

60% -

40% -

20% -

fraction of peak

0%

64 128 192 256 320 384 448 512
threads per multiprocessor

Experimental validation: 192 threads is enough

5

Use instruction level parallelism (ILP)

 What if we supply independent instructions
from same thread?

for(int 1 = 0; 1 < 1024*1024; 1 += 128)
{

fpragma unroll
for(int § = 0; J < 128; J++)
{

i
Q.

5
o
+
0!

a
d
}
}

e Shouldn’t this require fewer threads to fill the
pipeline?

More ILP needs less warps

100% -
80% -
60% -
40% -

20% -

fraction of peak

0%

64 128 192 256 320 384 448 512
threads per multiprocessor

Now 128 threads suffice

Pushing it further

 Can we hide all latency using only 64 threads?

— (Can’t run fewer threads due to other bottlenecks)

for(1nt 1 = 0; 1 < 1024*1024; 1 += 128)
{

#pragma unroll
for(int 9 = 0; J < 128; J++)
{

D Qo
o
D Q0
* *
o o
+ + +
aad

64 threads is enough
100%;h————_\\\\\~______-_--__-__-____--—-

80% -
60% -
40% -

20% -

fraction of peak

0%

64 128 192 256 320 384 448 512
threads per multiprocessor

We hid all latency using only 6% occupancy

Does ILP happen in practice?

* Yes, e.g. if using register blocking
e Orif you compute multiple outputs per thread

Can we hide memory latency in a similar
manner?

— It is hundreds of cycles...

Memcpy benchmark

* Copy one 64-bit word per thread:

__global__ void memcpy(float2 *dst, floatZ2 *src)
{
int i1block = blockIdx.x
+ _ mul24(blockIdx.y, gridDim.x);
int index = threadIdx.x
+ mul?24(iblock, blockDim.x);

float2 a0 = src[index];
dst [index] = aO0;
}

e Allocate shared memory dynamically to
control occupancy

Memcpy performance
100% -

80% -

60% -

40% -

20% -

fraction of peak

0%
64 128 192 256 320 384 448
threads per multiprocessor

* Need 320 threads to hide memory latency

512

13

Copy two words per thread

{

__global__ void memcpy (

float2 *dst, floatZ2 *src

int iblock = blockIdx.x

+ _ mul24(blockIdx.y, gridDim.x
int index = threadIldx.x

+ mul24(iblock, blockDim.x * 2
float2 a0 = srcl[index];

float2 al = src[index+blockDim.x];

dst [index] = a0;
dst [index+blockDim. x]

= al;

)

) ;

) ;

* Load two words but wait for latency once

14

2 words per thread: performance

100% -
80% -
60% -
40% -

20% -

fraction of peak

0%

64 128 192 256 320 384 448 512
threads per multiprocessor

Get same performance at lower occupancy

15

4 words per thread: performance

100% -
80% - /*
60% -
40% -

20% -

fraction of peak

0%

64 128 192 256 320 384 448 512
threads per multiprocessor

Get same performance at even lower occupancy

16

8 words per thread: performance

100%
so% —
60%
40%

20% -

fraction of peak

0%
64 128 192 256 320 384 448 512
threads per multiprocessor

Get 80% of memory peak at 6% occupancy

17

Conclusion so far

Can hide both memory and arithmetic latency
using 64 threads

Who cares?

* Low occupancy = many registers per thread
* S0, can keep large working set in registers

— To reduce traffic to other memories
— E.g. to access shared memory less

Can shared memory be a bottleneck?

________ GBO/GT200 _Fermi

flops/cycle, a*b+c, 16 flops 64 flops
single precision

words/cycle, 32-bit, 8 words 16 words
shared memory

ratio 2 flops/word 4 flops/word

* Naive matrix multiply has 1 flop/word
— Bound by shared memory bandwidth

20

Shared memory

Common computational pattern when using
shared memory:

 Read from global memory

e Store to shared memory

* Synchronize threads

 Compute using shared memory
Is occupancy important in this case?

21

Whole thread block stalls at once

* Due to synchronization, whole thread block
stalls at once

— no matter how many threads in it:

What you need is not many concurrent threads,
but many concurrent thread blocks

22

Smaller blocks hide latency same

In particular, if you do same work:

Using fewer threads, you hide latency sam:e

memory latency
memory latency
memory latency
memory latency

(This implies doing more work per thread)

* |n fact, smaller thread blocks are better!

Small thread blocks are better (I)

* Less threads = more registers per thread

Small thread blocks are better (I1)

There is a limit on total number of threads
1024 on GT200

This is only 2 thread blocks of size 512
— Enough to hide latency?

But 8 thread blocks of size 128

Small thread blocks are better (Ill)

e 2x more work per thread — less than 2x more
registers per thread

— So, less registers per thread block
— Thus, can run more thread blocks concurrently

 |f already enough concurrent thread blocks?

— Use the extra registers to process larger data
blocks

Demo: matrix multiply from SDK

A few simple changes to get 1.4x speedup

The baseline

Matrix multiply example from SDK 2.3:
Uses 16x16 matrix blocks
Computes one output per thread
16x16 thread blocks

Well optimized otherwise:
— All memory accesses are coalesced
— Data is cached in shared memory

The baseline (CUDA SDK 2.3)

float Csub = 0;
for (int a = aBegin, b = bBegin; a <= aEnd;
a += aStep, b += bStep) {

__shared_ float As[BLOCK_SIZE] [BLOCK_SIZE];
__shared_ float Bs[BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = Ala + WA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];
__syncthreads () ;

for (int k = 0
Csub += AS
__syncthreads (

; k < BLOCK_SIZE; ++k)
(ty, k) * BS(k, tx);
) ;

int ¢ = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc + wB * ty + tx] = Csub;

The original code (comments not included)

The baseline performance

The baseline runs at 200 Gflop/s
— For 1008x1008 matrices
— Measure only GPU time (no PCle transfers)

Uses only 14 registers per thread
Sustains 100% occupancy

What can be better?

Step I: do 2 outputs per thread

* Inthe new code | run 16x8 thread blocks

— Grid size is same
* Half of the threads is eliminated
 Each remaining thread does 2x more work

Two outputs per thread ()

float Csub[2] = {0,0};
for (int a = aBegin, b = bBegin; a <= aEnd;
a += aStep, b += bStep) {

__shared__ float As[BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = Ala + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

AS (ty+8, tx) = A[a + wA * (ty+8) + tx];
BS (ty+8, tx) = B[b + wB * (ty+8) + tx];
__syncthreads () ;

Changes are marked in red
 Now have 2 outputs (Csub)
 Each thread fetches 2 elements of A and B

Two outputs per thread (Il)

#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k)

{
Csub[0] += AS(ty, k) * BS(k, tx);
Csub[1l] += AS(ty+8, k) * BS(k, tx);
}

__syncthreads() ;

}

int ¢ = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc + wB * ty + tx] = Csub[O0];
Clc + wB * (ty+8) + tx] = Csub[l];

e 2x more flops per thread

e Store 2 outputs in the end
* Now compiler needs a hint to unroll the loop

2 outputs/thread: performance

* New performance: 253 Gflop/s
— 27% speedup!

* Uses only 18 registers per thread

— 4 more

* Sustains 75% occupancy
— 25% less

Why the speedup?

Data fetched from shared memory is reused:

for (int k = 0; k < BLOCK SIZE; ++k)

{
Csub[0] += AS(ty, k) * BS(k, tx);
Csub[1l] += AS(ty+8, k) * BS(k, tx);

}

Reuse was not possible before

 The data was fetched in different threads
e Can’t access registers of another thread
Result: reduced shared memory traffic

36

 Why not apply same technique again?
* Now use 16x4 thread blocks
e 4 outputs per thread

Four outputs per thread (l)

float Csub[4] = {0,0,0,0};
for (int a = aBegin, b = bBegin; a <= aEnd;
a += aStep, b += bStep) {

__shared._ float As[BLOCK_SIZE] [BLOCK_SIZE];
__shared._ float Bs[BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = Ala + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];
AS(ty+4, tx) = Ala + wA * (ty+4) + tx];
BS(ty+4, tx) = B[b + wB * (ty+4) + tx];
AS (ty+8, tx) = A[a + wA * (ty+8) + tx];
BS (ty+8, tx) = B[b + wB * (ty+8) + tx];
AS (ty+12,tx) = A[a + wA * (ty+12)+ tx];
BS (ty+12,tx) = B[b + wB * (ty+12)+ tx]

__syncthreads() ;

Same idea...

Four outputs per thread (Il)

int
Clc
Clc
Clec
Clec

for

{

}

+ + + + 0

#pragma unroll
(int k = 0; k < BLOCK_SIZE; ++k)

Csub[0] += AS(ty,
Csub[1] += AS(ty+4, k) * BS(k, tx);
Csub[2] += AS(ty+8, k) * BS(k, tx);
Csub[3] += AS(ty+12,k) * BS(k, tx);

syncthreads () ;

k) * BS(k, tx);

= wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
wB * ty + tx] = Csub[0];

wB * (ty+4) + tx]
wB * (ty+8) + tx]
wB * (ty+12)+ tx]

Csubl[1l];
Csub[2];
Csub[3];

Get even more reuse now...

39

Unexpected slowdown

New performance is only 235 Gflop/s
* 8% slowdown

What's the problem?

Use decuda to figure it out

decuda: disassembler of GPU binaries

e second most useful tool after compiler

° manyt
develo

nanks to Wladimir J. van der Laan for

oing it!

Use decuda to figure it out

Many operations on pointers to shared memory:

movsh.b32 $ofs4, $r29, 0x00000000

mad.rn.f32 $Srl7, s[Sofs4+0x000c], Sr4d, Srl7
mad.rn.f32 $Srl10, s[Sofs2+0x000c], Sr4d4, Srlo0
mad.rn.f32 $r4, s[$o0fs3+0x000c], Sr4d4, S$SrlS8

movsh.b32 $ofs4, $r9, 0x00000002

add.b32 $ofs4, $ofs4, 0x000002a4

mov.b32 $r18, $ofs4

mad.rn.f32 $rl6e, s[Sofsl+0x0010], Sr3, Srlo
movsh.b32 $ofs4, $r29, 0x00000000

mad.rn.f32 $Srl7, s[Sofs4+0x0010], Sr3, S$Srl7
mad.rn.f32 $Srl10, s[Sofs2+0x0010], Sr3, Srlo0
mad.rn.f32 $r30, s[Sofs3+0x0010], Sr3, Sr4

movsh.b32 $ofs4, $r18, 0x00000000

42

Workaround: transpose blocks

 The problem is poor locality in sequential
access to shared memory

— Need to reload pointers too often

e Solution:
— Use transposed layout in shared memory
* Change all AS(yy,xx) to AS(xx,yy), same with BS

— Pad the arrays
e Define as As[BLOCK_SIZE][BLOCK_SIZE+1]

New 4 outputs/thread: performance

* New performance: 284 Gflop/s

e Uses only 29 registers per thread

— 11 more

* Sustains 37.5% occupancy

— 2X lower

Optimization summary

Outputs/thread 1 2 4
Registers/thread 14 18 29
Occupancy 100% 75% 37.5%
Registers/block 3584 2304 1856
Blocks/SM 4 6 6

Gflop/s 200 253 284

Optimize further?

At this rate we’ll get to CUBLAS soon:

400 -
350 -

N\

/

CUBLAS

SDK example

2 4 38

outputs per thread

16

flops/word

Speedup is due to less shared
memory traffic

=
U

—

O
%)

o

1 2 4 8 16
outputs per thread

occupancy

Run faster at lower occupancy

100%
80%
60%
40%
20%

0%

2
outputs per thread

Conclusion

* |f you optimize for perfect occupancy, you may
lose performance opportunities

e Consider hiding latency by computing multiple
outputs per thread

e Use registers instead of shared memory
whenever possible

