
GPU-accelerated snake.
Implementation of a region-based segmentation algorithm (snake).

Gilles Perrot

Introduction

Image segmentation – Definition, goals

• Dividing an image in two homogeneous regions.

• Reducing the amount of data needed to code information.

• Helping the human perception in certain cases.

Images of our interest – Characteristics

• 16 bit-coded gray levels,

• From 1 Mpixels to more than 100 Mpixels,

• Corrupted by additive white Gaussian noise.

FEMTO-ST 2012, DISC group 2 / 17

Introduction

Image segmentation – Definition, goals

• Dividing an image in two homogeneous regions.

• Reducing the amount of data needed to code information.

• Helping the human perception in certain cases.

Images of our interest – Characteristics

• 16 bit-coded gray levels,

• From 1 Mpixels to more than 100 Mpixels,

• Corrupted by additive white Gaussian noise.

FEMTO-ST 2012, DISC group 2 / 17

Snake algorithm

Algorithm basics – The criterion

H pixels

Image (I)

L pixels

background (B)

target (T)

contour (Γ)
N nodes

µT , σT

µB, σB

nB pixels

nT pixels

• The goal is to find the most likely contour Γ
(number and positions of nodes).

• The criterion used is a Generalized
Likelihood one .
In the Gaussian case, it is given by

GL =
1
2

[
nB.log

(
σ̂B

2
)

+ nT .log
(
σ̂T

2
)]

where σ̂Ω is the estimation of the deviation σ
for the region Ω.

FEMTO-ST 2012, DISC group 3 / 17

Snake Algorithm

Algorithm basics – Parameters estimation

• In the Gaussian case, Probability Density Function (PDF) pΩ has two
parameters, average µΩ and standard deviation σΩ, which are
estimated by maximum likelihood.
If z is the gray level of the pixel of coordinates (i, j) :

µ̂Ω = 1
nΩ

∑
(i,j)∈Ω

z(i, j)

σ̂2
Ω = 1

nΩ

∑
(i,j)∈Ω

(z(i, j)− µ̂Ω)2

• These estimations have to be computed for each test state of the
contour Γ : time-consuming.

• Based on the Green-Ostogradsky theorem, Chesnaud has shown how
to replace those 2-dimensions sums inside the contour by 1-dimension
sums along the contour.

• This optimization implies the precomputation of three cumulated
images, each one containing a single parameter needed to compute the
corresponding pixel’s contribution to the above sums.

FEMTO-ST 2012, DISC group 4 / 17

Snake Algorithm

Algorithm basics – Parameters estimation

• In the Gaussian case, Probability Density Function (PDF) pΩ has two
parameters, average µΩ and standard deviation σΩ, which are
estimated by maximum likelihood.
If z is the gray level of the pixel of coordinates (i, j) :

µ̂Ω = 1
nΩ

∑
(i,j)∈Ω

z(i, j)

σ̂2
Ω = 1

nΩ

∑
(i,j)∈Ω

(z(i, j)− µ̂Ω)2

• These estimations have to be computed for each test state of the
contour Γ : time-consuming.

• Based on the Green-Ostogradsky theorem, Chesnaud has shown how
to replace those 2-dimensions sums inside the contour by 1-dimension
sums along the contour.

• This optimization implies the precomputation of three cumulated
images, each one containing a single parameter needed to compute the
corresponding pixel’s contribution to the above sums.

FEMTO-ST 2012, DISC group 4 / 17

Snake Algorithm

Algorithm basics – Illustration

• 15 Mpixels image
(SSE implementation limit).

• Initial contour : 4 nodes.

FEMTO-ST 2012, DISC group 5 / 17

Snake Algorithm

Algorithm basics – Illustration

• End of first iteration : no more
move can be of interest.

FEMTO-ST 2012, DISC group 5 / 17

Snake Algorithm

Algorithm basics – Illustration

• Nodes added in the middle of
segments.

FEMTO-ST 2012, DISC group 5 / 17

Snake Algorithm

Algorithm basics – Illustration

• End of second iteration.

FEMTO-ST 2012, DISC group 5 / 17

Snake Algorithm

Algorithm basics – Simplified flowchart

FEMTO-ST 2012, DISC group 6 / 17

Snake Algorithm

Algorithm basics – Simplified flowchart

FEMTO-ST 2012, DISC group 6 / 17

Snake Algorithm

Algorithm basics – Simplified flowchart

FEMTO-ST 2012, DISC group 6 / 17

Snake Algorithm

Algorithm basics – Simplified flowchart

FEMTO-ST 2012, DISC group 6 / 17

Snake algorithm

Algorithm basics – GL criterion computation

FEMTO-ST 2012, DISC group 7 / 17

GPU implementation

Design facts

• Parallelism needs reside essentially in two clearly identified code
blocks : GL criterion (60%) and cumulated images (20%)

• Keeping data in GPU memory avoids costly transfers. Thus, the whole
computation is being performed by the GPU.

• Parallelism level is set to one thread per pixel of the contour. Alternate
choices lead to lower performance (1 thread/segment, 1
thread/contour).

• The innermost loop, among contour nodes, is being parallelized.

• The two other loops are CPU driven. Each loop only requires a single
byte of data to be transferred from GPU to CPU at each step.

• The precomputations of two cumulated images are being parallelized.
The element values of the third cumulated image are being computed
on the fly.

FEMTO-ST 2012, DISC group 8 / 17

GPU implementation

GL criterion – Parallelism level

• 8 test positions around each
node Pi , denoted Ti,0 to Ti,7.

• Each test position defines a
pair of segments.

• Each combination of test
positions defines a contour.

• GPU implementation
evaluates in parallel every
possible combination of test
positions

• Even nodes and odd nodes
are moved independently.

FEMTO-ST 2012, DISC group 9 / 17

GPU implementation
GL criterion – Data structure

block 0 block 1

NTB blocks of bs threads for one segment
block NTB − 1

FEMTO-ST 2012, DISC group 10 / 17

GPU implementation
GL criterion – Data structure

block 0 block 1

16 segments around one node

NTB blocks of bs threads for one segment
block NTB − 1

−−−−−→
Pi−1Ti,0

−−−−−→
Pi−1Ti,7

−−−−−→
Ti,0Pi+1

−−−−−→
Ti,7Pi+1

FEMTO-ST 2012, DISC group 10 / 17

GPU implementation
GL criterion – Data structure

block 0 block 1

16 segments around one node

NTB blocks of bs threads for one segment
block NTB − 1

−−−−−→
Pi−1Ti,0

−−−−−→
Pi−1Ti,7

−−−−−→
Ti,0Pi+1

−−−−−→
Ti,7Pi+1

P2(Nn/2+Nn%2−1)P2P0

(Nn/2 + Nn%2) even nodes

FEMTO-ST 2012, DISC group 10 / 17

GPU implementation
GL criterion – Data structure

block 0 block 1

16 segments around one node

NTB blocks of bs threads for one segment
block NTB − 1

−−−−−→
Pi−1Ti,0

−−−−−→
Pi−1Ti,7

−−−−−→
Ti,0Pi+1

−−−−−→
Ti,7Pi+1

P2(Nn/2+Nn%2−1)P2P0

(Nn/2 + Nn%2) even nodes

P1 P3 P2(Nn/2−1)+1
(Nn/2) odd nodes

FEMTO-ST 2012, DISC group 10 / 17

GPU implementation

GL criterion – Parallel computations

• Each active thread corresponds to a pixel of a segment. There are
inactive threads.

• The main kernel (kernel1) computes coordinates of every pixels,
fetches parameter values from cumulated images and achieves the first
reduction stage at block level.

• Another kernel (kernel2)achieves a second reduction stage, providing
individual segments contributions.

• A third kernel (kernel3)computes the GL criterion value of each
evaluated contour and returns the best.

FEMTO-ST 2012, DISC group 11 / 17

GPU implementation
Focus on kernel1 – Coordinates of pixels
__global__ void kerne l1 (i n t nb_nodes , u in t32 npix_max , i n t l , u i n t 2 ∗ l i s t e _ p i x , bool pa i r s)

/ / indexes of elements
i n t blockSize = blockDim . x ;
i n t t i b = th read Idx . x ;
i n t nblocs_noeud = gridDim . x / (nb_nodes /2 + (nb_nodes%2)∗pa i r s) ;
i n t nblocs_seg = nblocs_noeud / 16 ;
i n t i d _ i n t e r v a l = b lock Idx . x / nblocs_noeud ;
i n t id_segment = (b lock Idx . x − i d _ i n t e r v a l∗nblocs_noeud) / nblocs_seg ;
i n t t i s = idx − (i d _ i n t e r v a l∗nblocs_noeud + id_segment∗nblocs_seg)∗blockDim . x ;

/ / i n r e g i s t e r s
u in t2 p ;
i n t dx=x2−x1 ;
i n t dy=y2−y1 ;
i n t abs_dx = ABS(dx) ;
i n t abs_dy = ABS(dy) ;
i n t nb_pix = abs_dy>abs_dx ?(abs_dy + 1) : (abs_dx +1) ;
i n t incx , incy ;

i f (t i s < nb_pix) {
i f (abs_dy > abs_dx) {

/ / 1 thread per row
double k = (double) dx / dy ;
p = make_uint2 (y1 + incy∗ t i s , x1 + f l o o r ((double) incy∗k∗ t i s +0.5)) ;

} else {
/ / 1 thread per column
double k =(double) dy / dx ;
p = make_uint2 (y1 + f l o o r ((double) (incx∗k∗ t i s)+0 .5) , x1 + incx∗ t i s) ;

}
}
__syncthreads () ;

FEMTO-ST 2012, DISC group 12 / 17

GPU implementation

Focus on kernel1 – Coordinates of pixels

• A Bresenham algorithm is not efficient here to discretize segments into
a set of individual pixels. It would generate too much branches in the
code.

• As contour is always processed counterclockwise, we use a simpler but
more efficient method.

• There are only few branches in the code but they do not lead to any
overhead compared to sequential Bresenham.

• Not enough computation to perform. Unable to hide arithmetic
operations latency.

• Use of thread registers for better throughout.

FEMTO-ST 2012, DISC group 13 / 17

GPU implementation

Focus on kernel1 – Segments contributions, fetching pixel’s parameters

/ / shared memory vec to rs
extern __shared__ t_sum_1 scumuls_1 [] ;
t_sum_x ∗ scumuls_x = (t_sum_x∗) &scumuls_1 [CFI (blockDim . x)] ;
t_sum_x2 ∗ scumuls_x2= (t_sum_x2∗) &scumuls_x [CFI (blockDim . x)] ;

i f ((t i s >0) && (t i s < nb_pix−1)
&& (((abs_dy <= abs_dx) && ((xprec > p . x) | | (xsu iv > p . x)))
| | (abs_dy > abs_dx)))

{
/ / f e t ch two parameters i n the cumulated images , the t h i r d i s computed on the f l y .
i n t pos = p . x ∗ l + p . y ;
scumuls_1 [CFI (t i b)] = 1 + p . y ;
scumuls_x [CFI (t i b)] = cumul_x [pos] ;
scumuls_x2 [CFI (t i b)] = cumul_x2 [pos] ;

} else {
/ / p i x e l w i th n u l l c o n t r i b u t i o n and padding i n the l a s t b lock o f each segment
scumuls_1 [CFI (t i b)] = 0 ;
scumuls_x [CFI (t i b)] = 0 ;
scumuls_x2 [CFI (t i b)] = 0 ;

}
__syncthreads () ;

FEMTO-ST 2012, DISC group 14 / 17

GPU implementation

Focus on kernel1 – Segments contributions, fetching pixel’s parameters

• No possible coalescence for global memory accesses as segment’s
geometry always vary.

• Two ways shared memory bank conflicts exists as shared data is 64
bits-coded.

• But shared memory is still the best choice because of the reduction to
be done.

FEMTO-ST 2012, DISC group 15 / 17

GPU implementation

Focus on kernel1 – Segments contributions, first reduction stage
u i n t o f f s e t ;
#pragma UNROLL
for (o f f s e t =1024; o f f s e t >32; o f f s e t /=2) {

i f (b lockSize >= 2∗o f f s e t) {
i f (t i b < o f f s e t) {

scumuls_1 [CFI (t i b)] += scumuls_1 [CFI (t i b + o f f s e t)] ;
scumuls_x [CFI (t i b)] += scumuls_x [CFI (t i b + o f f s e t)] ;
scumuls_x2 [CFI (t i b)] += scumuls_x2 [CFI (t i b + o f f s e t)] ;

}
__syncthreads () ;

} }

i f (t i b < 32) {
#pragma UNROLL
for (o f f s e t =32; o f f s e t >0; o f f s e t /=2)
{

scumuls_1 [CFI (t i b)] += scumuls_1 [CFI (t i b + o f f s e t)] ;
scumuls_x [CFI (t i b)] += scumuls_x [CFI (t i b + o f f s e t)] ;
scumuls_x2 [CFI (t i b)] += scumuls_x2 [CFI (t i b + o f f s e t)] ;

} }

i f (t i b == 0) {
gsombloc [b lock Idx . x] = scumuls_1 [0] ;
gsombloc [b lock Idx . x + gridDim . x] = scumuls_x [0] ;
gsombloc [b lock Idx . x + 2∗gridDim . x] = scumuls_x2 [0] ;

}

FEMTO-ST 2012, DISC group 16 / 17

GPU implementation

Focus on kernel2 – Segments contributions, second reduction stage
__global__ void somsom_full (u in t64 ∗ somblocs , i n t nb_nodes , unsigned i n t nb_bl_seg ,

u in t64 ∗ somsom, bool pa i r s) {
/ / r e g i s t e r s
u in t64 sdata [3] ;
unsigned n = nb_nodes /2 + pa i r s ∗(nb_nodes%2) ;
unsigned i n t seg = b lock Idx . x ;
unsigned i n t nb_seg = 16∗n ;

/ / 1 thread per segment
sdata [0] = 0 ;
sdata [1] = 0 ;
sdata [2] = 0 ;

for (i n t b=0; b < nb_bl_seg ; b++){
sdata [0] += somblocs [seg∗nb_bl_seg + b] ;
sdata [1] += somblocs [(seg + nb_seg)∗nb_bl_seg + b] ;
sdata [2] += somblocs [(seg + 2∗nb_seg)∗nb_bl_seg + b] ;

}

/ / sums ~ segment c o n t r i b u t i o n −−> g loba l memory
{

somsom[3∗seg] = sdata [0] ;
somsom[3∗seg + 1] = sdata [1] ;
somsom[3∗seg + 2] = sdata [2] ;

}
}

FEMTO-ST 2012, DISC group 17 / 17

GPU implementation

Results and analyse

• On images of size between 10 and 150 Mpixels : speedup around x7
compared with SSE2 implementation.

• The first iteration is fast, while the followings are sometimes lower than
the reference CPU implementation. It is due to larger segments and
thus less inactive threads in the grid.

• Algorithm that do not fit very well GPU architecture.

• Numerous lines of code. For example 200 lines vs 20 lines to compute
cumulated images.

FEMTO-ST 2012, DISC group 18 / 17

GPU implementation

Conclusion

• Speedups are not so impressives.

• Another data structure may be more suited.

• A 2D process would be far easier to code, but would not bring such a
speedup that the 2D→1D transform brought.

• When designing an algorithm, the targetted host properties should be
taken into account.

• Some processes may actually not be suited to GPUs.

FEMTO-ST 2012, DISC group 19 / 17

