GPU-accelerated snake.
Implementation of a region-based segmentation algorithm (snake).

Image segmentation — Definition, goals
e Dividing an image in two homogeneous regions.
e Reducing the amount of data needed to code information.
e Helping the human perception in certain cases.

FEMTO-ST 2012, DISC group 2/17

fenftest Introduction

Image segmentation — Definition, goals

e Dividing an image in two homogeneous regions.
e Reducing the amount of data needed to code information.
e Helping the human perception in certain cases.

Images of our interest — Characteristics
e 16 bit-coded gray levels,
e From 1 Mpixels to more than 100 Mpixels,
e Corrupted by additive white Gaussian noise.

FEMTO-ST 2012, DISC group 2/17

Snake algorithm

Algorithm basics — The criterion

Image (1)

e The goal is to find the most likely contour I"
(number and positions of nodes).

/ \ e The criterion used is a Generalized
target (T) Likelihood one .

H pixels In the Gaussian case, it is given by

NG pxels/
UT, 0
» L = 1 [nmtog (55%) + r.log (57

where oq is the estimation of the deviation o
for the region Q.

L pixels

FEMTO-ST 2012, DISC group 3/17

fenfedst Snake Algorithm \

scinces & tocWakgies

Institut

Algorithm basics — Parameters estimation

e In the Gaussian case, Probability Density Function (PDF) pq has two
parameters, average uq and standard deviation oq, which are
estimated by maximum likelihood.

If z is the gray level of the pixel of coordinates (/, /) :

ZES DIE)
- (iJ)eQ
08 =y > (2(i.)) — fin)*
(i,))eq
e These estimations have to be computed for each test state of the
contour I' : time-consuming.

FEMTO-ST 2012, DISC group 4/17

fenfidst Snake Algorithm

scinces & tocWakgies

Algorithm basics — Parameters estimation

e In the Gaussian case, Probability Density Function (PDF) pq has two
parameters, average uq and standard deviation oq, which are
estimated by maximum likelihood.

If z is the gray level of the pixel of coordinates (/, /) :

ZES DIE)
- (iJ)eQ
of = > (2(i)) —)
(i,))eq
e These estimations have to be computed for each test state of the
contour I' : time-consuming.

e Based on the Green-Ostogradsky theorem, Chesnaud has shown how
to replace those 2-dimensions sums inside the contour by 1-dimension
sums along the contour.

e This optimization implies the precomputation of three cumulated
images, each one containing a single parameter needed to compute the
corresponding pixel’s contribution to the above sums.

FEMTO-ST 2012, DISC group 4/17

fenfie/st Snake Algorithm [

Institut

Algorithm basics — lllustration

e 15 Mpixels image
(SSE implementation limit).

e |nitial contour : 4 nodes.

FEMTO-ST 2012, DISC group 5/17

fenfie/st Snake Algorithm [

Institut

Algorithm basics — lllustration

e End of first iteration : no more
move can be of interest.

FEMTO-ST 2012, DISC group 5/17

fenfie/st Snake Algorithm [

Institut

Algorithm basics — lllustration

e Nodes added in the middle of
segments.

FEMTO-ST 2012, DISC group 5/17

fenfie/st Snake Algorithm [

Institut

Algorithm basics — lllustration

e End of second iteration.

FEMTO-ST 2012, DISC group 5/17

Snake Algorithm

Algorithm basics — Simplified flowchart

FEMTO-ST 2012, DISC group 6/17

Snake Algorithm

Algorithm basics — Simplified flowchart

FEMTO-ST 2012, DISC group 6/17

Snake Algorithm

Algorithm basics — Simplified flowchart

Yes

Yes

No

‘es—

FEMTO-ST 2012, DISC g 6/17

Snake Algorithm

20% of
CPU time

More than 60%
of CPU time

No
FEMTO-ST 2012, DISC grﬁ 6/17

Snake algorithm

Algorithm basics — GL criterion computation

FEMTO-ST 2012, DISC group 7117

GPU implementation

Design facts

Parallelism needs reside essentially in two clearly identified code
blocks : GL criterion (60%) and cumulated images (20%)

Keeping data in GPU memory avoids costly transfers. Thus, the whole
computation is being performed by the GPU.

Parallelism level is set to one thread per pixel of the contour. Alternate
choices lead to lower performance (1 thread/segment, 1
thread/contour).

The innermost loop, among contour nodes, is being parallelized.

The two other loops are CPU driven. Each loop only requires a single
byte of data to be transferred from GPU to CPU at each step.

The precomputations of two cumulated images are being parallelized.
The element values of the third cumulated image are being computed
on the fly.

FEMTO-ST 2012, DISC group

8/17

fenfeel st GPU implementation &

Institut

GL criterion — Parallelism level

e 8 test positions around each
node P;, denoted T to T;7.

e Each test position defines a
pair of segments.

e Each combination of test
positions defines a contour.

e GPU implementation
evaluates in parallel every
possible combination of test
positions

e Even nodes and odd nodes
are moved independently.

FEMTO-ST 2012, DISC group 9/17

scinces & locWakgies

GL criterion — Data structure

GPU implementation

ittt hittaiidinil

Attt

block1

ock 0
Nrg blocks of bs threads for one segment

block NTB -1

FEMTO-ST 2012, DISC group

10/17

fenfeel st GPU implementation

GL criterion — Data structure

it R i

block 0 block 1~ block Nrg — 1
Nrg blocks of bs threads for one segment

HiL BRI RRL

P Ti,o Pi_s Ti,7 Ti,oP1+1 Ti,7Pi+1
16 segments around one node

FEMTO-ST 2012, DISC group 10/17

fenfie/st GPU implementation

ST T O G

Po Py Pa(n, 24 Npss2—1)
(Na/2 + N;%2) even nodes

scinces & locWakgies

GPU implementation

IR

P,

2
(Nn/2 + N,%2) even nodes

RN

P.

3
(Nn/2) odd nodes

FEMTO-ST 2012, DISC group 10/17

fenfeel st GPU implementation &

Institut

GL criterion — Parallel computations

e Each active thread corresponds to a pixel of a segment. There are
inactive threads.

e The main kernel (kernell) computes coordinates of every pixels,
fetches parameter values from cumulated images and achieves the first
reduction stage at block level.

e Another kernel (kernel2)achieves a second reduction stage, providing
individual segments contributions.

e A third kernel (kernel3)computes the GL criterion value of each
evaluated contour and returns the best.

FEMTO-ST 2012, DISC group 11/17

fenfeel st GPU implementation &
R
__global__ void kernell (int nb_nodes, uint32 npix_max, int |, uint2 xliste_pix, bool pairs)
// indexes of elements
int blockSize = blockDim.x ;
int tib = threadldx.x ;
int nblocs_noeud = gridDim.x / (nb_nodes/2 + (nb_nodes%2)xpairs)
int nblocs_seg = nblocs_noeud / 16 ;
int id_interval = blockldx.x / nblocs_noeud ;
int id_segment = (blockldx.x — id_interval=«nblocs_noeud)/nblocs_seg ;
int tis = idx — (id_interval«nblocs_noeud + id_segmentxnblocs_seg)xblockDim.x ;

s

//in registers

uint2 p ;

int dx=x2—x1;

int dy=y2—y1;

int abs_dx = ABS(dx);

int abs_dy = ABS(dy);

int nb_pix = abs_dy>abs_dx?(abs_dy+1):(abs_dx+1);
int incx, incy ;

it (tis < nb_pix){

if (abs_dy > abs_dx){

//1 thread per row

double k = (double)dx/dy ;

p = make_uint2(y1 + incyxtis , x1 + floor ((double)incyxkxtis+0.5))
} else {

//1 thread per column

double k=(double)dy/dx ;

p = make_uint2(y1 + floor ((double)(incxxkxtis)+0.5)
}

__syncthreads ();

5

, x1 + incxxtis)

FEMTO-ST 2012, DISC group 12/17

fenfeel st GPU implementation &

Institut

Focus on kernel1 — Coordinates of pixels

e A Bresenham algorithm is not efficient here to discretize segments into
a set of individual pixels. It would generate too much branches in the
code.

e As contour is always processed counterclockwise, we use a simpler but
more efficient method.

e There are only few branches in the code but they do not lead to any
overhead compared to sequential Bresenham.

e Not enough computation to perform. Unable to hide arithmetic
operations latency.

e Use of thread registers for better throughout.

FEMTO-ST 2012, DISC group 13/17

fenfie/st GPU implementation

Focus on kernel1 — Segments contributions, fetching pixel’s parameters

//shared memory vectors
extern __shared__ t sum_1 scumuls_1[] ;

t_sum_x * scumuls_x = (t_sum_xzx) &scumuls _1[CFl(blockDim.x)] ;
t_sum_x2 x scumuls_x2= (t_sum_x2x) &scumuls_x[CFl(blockDim.x)] ;
if ((tis >0) && (tis < nb_pix—1)

&& (((abs_dy <= abs_dx) && ((xprec > p.x) || (xsuiv > p.x)))

|| (abs_dy > abs_dx)))

{

//fetch two parameters in the cumulated images, the third is computed on the fly.
int pos = p.x x | +p.y ;

scumuls_1[CFI(tib)] =1 + p.y ;

scumuls_x[CFI(tib)] = cumul_x[pos] ;

scumuls_x2[CFI(tib)] = cumul_x2[pos];

else {

//pixel with null contribution and padding in the last block of each segment
scumuls_1[CFI(tib)]
scumuls_x[CFI(tib)]
scumuls_x2[CFI(tib)]

0.
0;

__syncthreads ();

FEMTO-ST 2012, DISC group 14/17

fenftest GPU implementation

scinces & locWakgies

Focus on kernel1 — Segments contributions, fetching pixel’s parameters

e No possible coalescence for global memory accesses as segment’s
geometry always vary.

e Two ways shared memory bank conflicts exists as shared data is 64
bits-coded.

e But shared memory is still the best choice because of the reduction to
be done.

FEMTO-ST 2012, DISC group 15/17

fenfie/st GPU implementation

Focus on kernel1 — Segments contributions, first reduction stage

uint offset;

#pragma UNROLL

for (offset=1024; offset>32; offset/=2) {

if (blockSize >= 2xoffset) {
if (tib < offset) {

scumuls_1[CFI(tib)] += scumuls_1[CFI(tib + offset)];
scumuls_x[CFI(tib)] += scumuls_x[CFI(tib + offset)];
scumuls_x2[CFI(tib)] += scumuls_x2[CFI(tib + offset)];

__syncthreads ();

1}

if (tib < 32) {
#pragma UNROLL
for (offset=32; offset>0; offset/=2)

scumuls_1[CFI(tib)] += scumuls_1[CFI(tib + offset)];
scumuls_x[CFI(tib)] += scumuls_x[CFI(tib + offset)];
scumuls_x2[CFI(tib)] += scumuls_x2[CFI(tib + offset)];

1

if (tib == 0) {
gsombloc[blockldx.x] = scumuls_1[0] ;
gsombloc[blockldx.x + gridDim.x] = scumuls_x[0] ;
gsombloc[blockldx.x + 2xgridDim.x] = scumuls_x2[0]
}

FEMTO-ST 2012, DISC group 16/17

fenftest GPU implementation

scinces & locWakgies

Focus on kernel2 — Segments contributions, second reduction stage

__global__ void somsom_full(uint64 % somblocs, int nb_nodes, unsigned int nb_bl_seg,
uint64 * somsom, bool pairs){

//registers

uint64 sdata[3];

unsigned n = nb_nodes/2 + pairs*(nb_nodes%2) ;
unsigned int seg = blockldx.x ;

unsigned int nb_seg = 16xn ;

//1 thread per segment

sdata[0] = 0;
sdata[1] = 0;
sdata[2] = 0;

for (int b=0; b < nb_bl_seg ; b++){
sdata[0] += somblocs[seg*nb_bl_seg + b];
sdata[1] += somblocs[(seg + nb_seg)+nb_bl_seg + b];
sdata[2] += somblocs[(seg + 2xnb_seg)*xnb_bl_seg + b];

//sums ~ segment contribution —> global memory

{

somsom[3xseg] = sdata[0];
somsom[3xseg + 1] = sdata[1];
somsom[3*seg + 2] = sdata[2];

FEMTO-ST 2012, DISC group 17/17

fenfeel st GPU implementation

Results and analyse

e On images of size between 10 and 150 Mpixels : speedup around x7
compared with SSE2 implementation.

e The first iteration is fast, while the followings are sometimes lower than
the reference CPU implementation. It is due to larger segments and
thus less inactive threads in the grid.

e Algorithm that do not fit very well GPU architecture.

e Numerous lines of code. For example 200 lines vs 20 lines to compute
cumulated images.

FEMTO-ST 2012, DISC group 18/17

‘

Institut
s

GPU implementation \

Institut

FRESNEL

Conclusion

Speedups are not so impressives.
Another data structure may be more suited.

A 2D process would be far easier to code, but would not bring such a
speedup that the 2D—1D transform brought.

When designing an algorithm, the targetted host properties should be
taken into account.

Some processes may actually not be suited to GPUs.

FEMTO-ST 2012, DISC group 19/17

