-Un algorithme initiallement proposé en 1975 par Fukunaga et Hostetler \cite{fukunaga1975estimation} permet de manière plus générique de déterminer le nombre de segments, ou modes, ainsi que les points, ou pixels, qui les composent. Il cherche pour ce faire à localiser les $k$ positions ou le gradient de densité s'annule.
-Il utilisé un voisinage pondére (ou \textit{kernel}) et détermine le centre de masse des segments en suivant itérativement le gradient de densité dans le voisinage autour de chaque élément du domaine. Lorsque l'algorithme à convergé, les $k$ segments sont identifiés et continennent chacun l'ensemble des points qui ont conduit à leur centre de masse respectif.
-Étonnement, malgré ses qualités intrinsèques, cet algorithme du \textit{mean-shift} est resté longtemps sans susciter de grand intérêt, jusqu'à l'étude de Cheng \cite{cheng1995mean} qui en a demontré les propriétés et établi les lien avec d'autres techniques d'optimisation commme la descente/montée de gradient ou de filtrage commme le floutage.
-Comaniciu et Peer ont alors étendu l'étude et proposé une application à la segmentation en utilisant l'espace colorimétrique CIELUV \cite{foley1994introduction} et montré qu'elle permettait une meilleure identification des modes de l'image \cite{comaniciu1999mean,comaniciu2002mean}.
-Une implémentation de la variante proposée par Keselman et Micheli-Tzanakou dans \cite{keselman1998extraction} appliquée à notre image de test fournit les résultats reproduits à la figure \ref{fig-meanshift-cochon}. Pour se rapprocher des traitements précédents, nous avons identifié, par essais successifs, les tailles de voisinage conduisant à des nombre de segments identiques à ceux des figures précedentes (de 2 à 5). Le volume minimal admis pour un segment à été arbitrairement fixé à 100 pixels.
+Dès 1975, Fukunaga et Hostetler \cite{fukunaga1975estimation} avaient décrit un algorithme générique permettant de déterminer le nombre de segments, ou modes, ainsi que les points, ou pixels, qui les composent. Leur algorithme cherche pour ce faire à localiser les $k$ positions où le gradient de densité s'annule.
+Il utilise à cet effet un voisinage pondéré (ou \textit{kernel}) et détermine le centre de masse des segments en suivant itérativement le gradient de densité dans le voisinage de chaque élément du domaine. Lorsque l'algorithme a convergé, les $k$ segments sont identifiés et contiennent chacun l'ensemble des points qui ont conduit à leurs centres de masse respectifs.
+Étonnement, malgré ses qualités intrinsèques, cet algorithme du \textit{mean-shift} est resté longtemps sans susciter de grand intérêt, jusqu'à l'étude de Cheng \cite{cheng1995mean} qui en a démontré les propriétés et établi les liens avec d'autres techniques d'optimisation ou de filtrage, comme la descente/montée de gradient ou le floutage.
+
+Comaniciu et Peer ont alors étendu l'étude et en ont proposé une application à la segmentation utilisant l'espace colorimétrique CIELUV \cite{foley1994introduction} et ont montré qu'elle permettait une meilleure identification des modes de l'image \cite{comaniciu1999mean,comaniciu2002mean}.
+Une implémentation de la variante proposée par Keselman et Micheli-Tzanakou dans \cite{keselman1998extraction} appliquée à notre image de test, fournit les résultats reproduits à la figure \ref{fig-meanshift-cochon}. Pour se rapprocher des traitements précédents, nous avons identifié, par essais successifs, les tailles de voisinage conduisant à des nombres de segments identiques à ceux des figures précédentes (de 2 à 5), le volume minimal admis pour un segment étant arbitrairement fixé à 100 pixels.