\item les \textit{level-sets}, dont la particularité est de ne pas employer directement une courbe paramétrique plane mais de définir l'évolution des frontières comme l'évolution temporelle de l'ensemble des points d'élévation nulle d'une surface 3D soumise à un champ de force.
Les propriétés des contours actifs par \textit{level-sets} se sont révélées intéressantes, en particulier la faculté de se disjoindre ou de fusionner, mais les temps de calcul se sont avérés très pénalisants.
Après la formulation initiale de Osher et Sethian en 1988 \cite{osher1988fronts}, plusieurs façons de réduire le coût du calcul ont été formulées, dont les plus importantes restent la technique dite \textit{narrow band} \cite{adalsteinsson1994fast} (bande étroite) qui ne calcule à chaque itération que les points dans une bande étroite autour du plan $z=0$ de l'itération courante et celle du \textit{fast marching} \cite{sethian1996fast} qui s'applique dans le cas particulier d'une évolution monotone des fronts.
\item les \textit{level-sets}, dont la particularité est de ne pas employer directement une courbe paramétrique plane mais de définir l'évolution des frontières comme l'évolution temporelle de l'ensemble des points d'élévation nulle d'une surface 3D soumise à un champ de force.
Les propriétés des contours actifs par \textit{level-sets} se sont révélées intéressantes, en particulier la faculté de se disjoindre ou de fusionner, mais les temps de calcul se sont avérés très pénalisants.
Après la formulation initiale de Osher et Sethian en 1988 \cite{osher1988fronts}, plusieurs façons de réduire le coût du calcul ont été formulées, dont les plus importantes restent la technique dite \textit{narrow band} \cite{adalsteinsson1994fast} (bande étroite) qui ne calcule à chaque itération que les points dans une bande étroite autour du plan $z=0$ de l'itération courante et celle du \textit{fast marching} \cite{sethian1996fast} qui s'applique dans le cas particulier d'une évolution monotone des fronts.