-\section{Présentation de l'algorithme}
+\section{Introduction}
La principale difficulté soulevée par l'emploi d'algorithmes de type \textit{snake} orientés contour est le choix de la fonction d'énergie externe et la détermination de la nature des images auxquelles elle convient.
Dans l'approche orientée régions, les deux régions que sont l'extérieur et l'intérieur du contour (cas mono cible) sont prises en compte dans l'estimation de la forme du contour ; cela permet d'extraire des formes dans des images où les contours de la cible sont mal définis, en raison d'un fort niveau de bruit par exemple.
Les algorithmes découlant de cette approche n'ont fait l'objet, à notre connaissance, d'aucune parallèlisation sur GPU, malgré le grand intérêt qu'elles revêtent dans l'interprétation d'images fortement bruitées ( RADAR, médicales,\dots ) et le besoin d'en réduire les temps d'exécution suffisamment pour permettre l'interactivité.
+
Nous proposons dans la suite de ce chapitre de détailler tout d'abord l'algorithme séquentiel que nous avons pris comme référence, puis d'en présenter la version parallèle pour GPU que nous en avons conçu.
L'algorithme a été décrit et proposé initialement en 1999 par Chesnaud \textit{et al.} dans \cite{ChesnaudRB99}. L'implémentation que les auteurs ont développé a continué d'être améliorée jusqu'à aujourd'hui et est employée comme brique élémentaire dans des algorithmes plus complexes. La version qui sert de référence ici est une implémentation séquentielle optimisée qui met aussi à profit les capacités de parallélisme des CPU actuels en employant le jeu d'instruction SSE2 des microprocesseurs. La description que nous en faisons dans les lignes qui suivent est très largement inspirée de \cite{ChesnaudRB99} à la différence que nous n'implémentons pas les critères de régularisation du contour ni de minimisation de la longueur de description pour nous focaliser sur la déformation du contour et sa convergence.
+\section{Présentation de l'algorithme}
\subsection{Formulation}
À l'intérieur de l'image observée $\bar{v}$, soient $\bar{t}$ le vecteur composé par les niveaux de gris des $N_t$ pixels de la région cible $\Omega_t$ et $\bar{b}$ celui des $N_b$ pixels du fond $\Omega_b$. Les vecteurs $\bar{t}$ et $\bar{b}$ sont supposés non corrélés et sont caractérisés par leurs densités de probabilité (PDF) respectives $p^{\Theta_t}$ et $p^{\Theta_b}$ ; $\Theta_t$ et $\Theta_b$ étant les vecteurs des paramètres de leurs PDF. Dans le cas gaussien que nous supposerons ici, $\Theta = (\mu, \sigma)$ où $\mu$ est la moyenne et $\sigma^2$ est la variance.
On note $\Gamma$ le contour de la région cible ($\Gamma \in \Omega_t$), que l'on suppose continu en connexité à 8 voisins.
GL=\frac{1}{2}\left(N_tln\left(\widehat{\sigma_t^2}\right)+N_bln\left(\widehat{\sigma_b^2}\right)\right)
\end{equation}
-\subsection{Optimisation des calculs}\label{snake-formulation}
+\subsection{Optimisation des calculs\label{snake-formulation}}
La maximisation de GL est effectuée en employant une technique itérative où sa valeur doit être calculée à chaque déformation du contour $\Gamma$.
Si l'on se reporte à l'équation \eqref{eq-teta}, on voit que l'obtention de la valeur de GL nécessite, à chaque évaluation d'une géométrie donnée de $\Gamma$, le calcul des sommes
\begin{align}
Par ailleurs, le choix d'un contour polygonal permet également d'améliorer l'efficacité de l'algorithme car lors de la phase de segmentation, le déplacement d'un sommet du polygone n'influe que sur les pixels des deux segments qui s'y rapportent, réduisant ainsi la quantité de calculs à effectuer à chaque nouvelle déformation du contour.
\begin{upminfo}
- L'approche décrite dans ce chapitre n'est valide que si les segments formant le polygone du contour ne se croisent pas. Il est donc nécessaire, lors de la convergence de la segmentation, d'empêcher les croisements de segments. Une solution simple a été proposée dans \cite{ChesnaudRB99} et nous l'avons parallélisée dans le cadre des travaux présentés ici.
+L'approche décrite dans ce chapitre n'est valide que si les segments formant le polygone du contour ne se croisent pas. Il est donc nécessaire, lors de la convergence de la segmentation, d'empêcher ces croisements. Une solution simple a été proposée dans \cite{ChesnaudRB99}, que nous avons parallélisée et intégrée.
\end{upminfo}
-\subsection{Implémentation séquentielle}\label{snake-cpu-impl}
+\subsection{Implémentation séquentielle\label{snake-cpu-impl}}
Un des inconvénients des algorithmes de type \textit{snake} est l'influence du contour initial sur la convergence de la segmentation. Pour pallier simplement ce défaut, une technique progressive est adoptée, en initialisant le contour avec peu de sommets (4) puis en augmentant le nombre au fur et à mesure de la convergence. L'algorithme \ref{algo-snake-cpu1} décrit macroscopiquement la solution mise \oe uvre tandis que l'algorithme \ref{algo-snake-cpu2} en présente les détails.
-\begin{algorithm}
-\label{algo-snake-cpu}
+\begin{algorithm}[h]
+\label{algo-snake-cpu1}
+\small
\caption{Principe mis en \oe uvre pour la convergence du snake polygonal}
Calculer les images cumulées\;
Initialiser le contour avec 4 sommets\;
}
\end{algorithm}
-\begin{algorithm}[h]
+\begin{algorithm}[H]
\caption{Détail de l'implémentation du snake polygonal}
-\label{cpualgo}
+\small
+\label{algo-snake-cpu2}
Lire l'image $\bar{v}$\;
Calculer les images cumulées $S_1$, $S_x$ $S_{x^2}$ \nllabel{li-img-cumul}\tcc*[r]{en parallèle via SSE2}
$n \leftarrow 0$ \tcc*[r]{indice de boucle niveau contour}
}
\end{algorithm}
+\pagebreak
Les différentes sommations nécessaires au calcul de la valeur du critère $GL$ sont effectuées en parallèle à l'aide du jeu d'instructions SSE2. La taille des registres utilisables est de 128 bits et permet ainsi de traiter des images de 4096$\times$4096 pixels dont les niveaux de gris sont codés sur 16 bits. Cela ne laisse toutefois que 12 bits pour le codage des segments du contour et limite ainsi leur longueur à 4096 pixels. L'organisation d'un registre SSE 128 bits est donc la suivante :
\begin{itemize}
\item 24 bits pour les sommes à opérandes dans $S_1$
\label{fig-snakecpu-cochon512}
\end{figure}
-La dépendance vis à vis du contour initial qui est un des principaux soucis liés au snake est ici fortement relativisée. La figure \ref{fig-snakecpu-compinit} montre le contour final segmentant l'image de test de la figure \ref{fig-snakecpu-cochon512} à partir d'un état initial très éloigné du précédent et \textit{a priori} très défavorable compte tenu du fait qu'il est loin de la cible et sans intersection avec elle. Toutefois, le contour final obtenu est très proche de celui obtenu à partir d'un état initial englobant la cible, malgré un n\oe ud qui s'est ``accroché'' au bord de l'image. La convergence est également plus longue à obtenir dans ce cas avec Un total de 17 itérations en 87~ms et 273 n\oe uds.
+La dépendance vis à vis du contour initial, qui est un des principaux soucis liés au snake est ici fortement relativisée. La figure \ref{fig-snakecpu-compinit} montre le contour final segmentant l'image de test de la figure \ref{fig-snakecpu-cochon512} à partir d'un état initial très éloigné du précédent et, \textit{a priori}, très défavorable compte tenu du fait qu'il est loin de la cible et sans intersection avec elle. Toutefois, le contour final est très proche de celui obtenu à partir d'un état initial englobant la cible, malgré un n\oe ud qui s'est ``accroché'' au bord de l'image. La convergence est également plus longue à obtenir dans ce cas avec 87~ms pour de 17 itérations et 273 n\oe uds.
\begin{figure}
\centering
\label{fig-snakecpu-compinit}
\end{figure}
-La dimension de l'image à traiter a également un effet sur le résultat et naturellement sur le temps de calcul. Si l'on conserve les mêmes paramètres d'optimisation que pour la segmentation de l'image 512$^2$ pixels et un contour initial dont les cotés sont à une distance des bords équivalente à 10\% des cotés de l'image, le résultat sur une image identique de 4000$^2$ pixels est obtenu en 1.3~s avec 1246 n\oe uds ; il est reproduit à la figure \ref{fig-snakecpu-cochon4ka}. Le nombre de pixels appartenant à la région cible est tel que l'amplitude des déplacements autorisés pour chaque n\oe ud ($d$) peut se révéler trop faible vis à vis du seuil d'acceptation des mouvements. On observe que les zones à gradient élevé ne posent pas de problème et sont détourées de la même manière, alors que dans le bas de l'image où figure une zone de gradient faible (ombre), la cible se trouve maintenant quelque peu surévaluée en surface là ou elle était plutôt sous évaluée dans l'image en 512$^2$ pixels.
+La dimension de l'image à traiter a également un effet sur le résultat et naturellement sur le temps de calcul. Si l'on conserve les mêmes paramètres d'optimisation que pour la segmentation de l'image 512$^2$ pixels et un contour initial dont les cotés sont à une distance des bords équivalente à 10\% des cotés de l'image, le résultat sur une image identique de 4000$^2$ pixels est obtenu en 1.3~s avec 1246 n\oe uds ; il est reproduit à la figure \ref{fig-snakecpu-cochon4ka}. Le nombre de pixels appartenant à la région cible est tel que l'amplitude des déplacements autorisés pour chaque n\oe ud ($d$) peut se révéler trop faible vis-à-vis du seuil d'acceptation des mouvements. On observe que les zones à gradient élevé ne posent pas de problème et sont détourées de la même manière, alors que dans le bas de l'image où figure une zone de gradient faible (ombre), la cible se trouve maintenant quelque peu surévaluée en surface là ou elle était plutôt sous évaluée dans l'image en 512$^2$ pixels.
On parvient à un résultat très proche beaucoup plus rapidement en adaptant les paramètres à la taille de l'image, comme le montre par exemple la segmentation de la figure \ref{fig-snakecpu-cochon4kb}, effectuée avec $d_{max}=128$ et $l_{min}=32$ et qui converge vers un contour de 447 n\oe uds en moins de 0.7~s.
Au delà des 16 millions de pixels (4000$^2$ pixels), l'implémentation séquentielle est toujours possible mais doit se priver des instructions SSE. Nous avons, avec leur accord, adapté le code des auteurs en ce sens et réalisé les mesures pour des tailles allant jusqu'à 150~MP. La table \ref{tab-snakecpu-speed-size} en synthétise les résultats en distinguant chaque fois le temps pris par les pré-calculs et celui nécessaire à la convergence de la segmentation.
\begin{figure}
\centering
- \subfigure[$d_{max}=16$ et $l_{min}=8$, 1246 n\oe uds en 1.3~s]{\label{fig-snakecpu-cochon4ka}\includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/snakecpu-cochon4k.png}}
- \subfigure[$d_{max}=128$ et $l_{min}=32$, 447 n\oe uds en 0.7~s]{\label{fig-snakecpu-cochon4kb}\includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/snakecpu-cochon4k-128-32.png}}
- \caption{Segmentation de l'image de test en 4000$^2$ pixels.}
+ \subfigure[$d_{max}=16$ et $l_{min}=8$, 1246 n\oe uds en 1.3~s]{\label{fig-snakecpu-cochon4ka}\includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/snakecpu-cochon4k-t.png}}
+ \subfigure[$d_{max}=128$ et $l_{min}=32$, 447 n\oe uds en 0.7~s]{\label{fig-snakecpu-cochon4kb}\includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/snakecpu-cochon4k-128-32-t.png}}
+ \caption{Segmentation de l'image de test en 4000$^2$ pixels. Le tracé du contour a été artificiellement épaissi pour le rendre visible à l'échelle de l'impression.}
\label{fig-snakecpu-cochon4k}
\end{figure}
+\begin{figure}[h]
+ \centering
+ \includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/cochon4kc-128-8-t.png}
+ \caption{Segmentation de l'image de test en 4000$^2$ pixels avec une cible de petite taille. Le contour initial est la transcription celui utilisé à la figure \ref{fig-snakecpu-cochon512}. Le tracé du contour a été artificiellement épaissi pour le rendre visible à l'échelle de l'impression.}
+ \label{fig-snakecpu-cochon4kc3}
+\end{figure}
+
+
\begin{table}[h]
\centering
{\bf Total} &0,51&4,08&5,7\\
\bottomrule
\end{tabular}
- \caption{Performances (en secondes) de la segmentation par snake polygonal sur CPU en fonction de la taille de l'image à traiter. Le temps sont obtenus avec la même image de test dilatée et bruitée et un contour initial carré dont la distance aux bords est proportionnelle à la taille de l'image. Seule l'image en 15~MP a pu être traitée par une implémentation utilisant SSE2.}
+ \caption{Performances (en secondes) de la segmentation par snake polygonal sur CPU en fonction de la taille de l'image à traiter. Les temps sont obtenus avec la même image de test dilatée et bruitée et un contour initial carré dont la distance aux bords est proportionnelle à la taille de l'image. Seule l'image en 15~MP a pu être traitée par une implémentation utilisant SSE2.}
\label{tab-snakecpu-speed-size}
\end{table}
Enfin, il faut aussi considérer les tailles relatives de la cible et de l'image. Ainsi, si on fait l'hypothèse d'une cible de petite taille ``noyée'' dans une image de grandes dimensions, les résultats de la segmentation seront impactés en raison, cette fois, d'une moindre adaptation à la cible lors des toutes premières itérations, les plus grossières, où le nombre de n\oe uds et réduit et le pas de déplacement potentiellement grand vis à vis de la cible. Ce cas de figure est illustré par la segmentation reproduite à la figure \ref{fig-snakecpu-cochon4kc3} et qui met en évidence une qualité moindre par la confusion des zones les plus sombres de la cible avec le fond.
-\begin{figure}[h]
- \centering
- \includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/cochon4kc-128-8.png}
- \caption{Segmentation de l'image de test en 4000$^2$ pixels avec une cible de petite taille. Le contour initial est celui utilisé à la figure \ref{fig-snakecpu-cochon4k}.}
- \label{fig-snakecpu-cochon4kc3}
-\end{figure}
-
\section{Implémentation parallèle GPU du snake polygonal}
L'analyse de l'exécution du programme séquentiel révèle la prépondérance des blocs fonctionnels suivants, dans l'ordre d'importance, qui occupent à eux seuls plus de 80\% du temps total d'exécution :
\begin{itemize}
- \item Le calcul de la contribution des segments (lignes \ref{li-contrib-seg-deb} à \ref{li-contrib-seg-fin} dans l'algorithme \ref{cpualgo})
+ \item Le calcul de la contribution des segments (lignes \ref{li-contrib-seg-deb} à \ref{li-contrib-seg-fin} dans l'algorithme \ref{algo-snake-cpu2})
\item La génération des trois images cumulées, avant le début des itérations (ligne \ref{li-img-cumul}).
\item La discrétisation des segments définis par les coordonnées de leurs extrémités (ligne \ref{li-bresen}).
\end{itemize}
\caption{Évolution du coût relatif des trois fonctions les plus consommatrices en temps de calcul en fonction de la taille de l'image à traiter.}
\end{figure}
-Si l'effort de parallélisation porte essentiellement sur ces fonctions coûteuses, l'ensemble du traitement est réalisé sur le GPU afin de réduire autant que possible les transferts entre le GPU et le système hôte qui, selon le volume concerné, sont susceptibles de grever considérablement la performance globale. L'hôte ne conserve que l'initiative du transfert initial et le contrôle de la boucle principale, ne nécessitant l'échange que d'un seul octet à chaque itération (le nombre de nouveau n\oe uds $N_{add}$).
+Si l'effort de parallélisation porte essentiellement sur ces fonctions coûteuses, l'ensemble du traitement est réalisé sur le GPU afin de réduire autant que possible les transferts entre le GPU et le système hôte qui, selon le volume concerné, sont susceptibles de grever considérablement la performance globale. L'hôte ne conserve que l'initiative du transfert initial et le contrôle de la boucle principale, ne nécessitant l'échange que d'un seul octet à chaque itération (représentant le nombre de nouveaux n\oe uds $N_{add}$).
-Les traitements étant totalement indépendants, nos traitons séparément la parallélisation des pré-calculs et celle de la segmentation.
+Les traitements étant totalement indépendants, nous traitons séparément la parallélisation des pré-calculs et celle de la segmentation.
-\subsection{pré-calculs des images cumulées}
-Pour réduire la quantité de mémoire requise, nous avons choisi de ne pas générer l'image $S_1$ mais plutôt d'en calculer les valeurs à la volée. L'expression en est simple et le temps pris par les opération élémentaires qu'elle met en jeu est largement compensé par le gain obtenu en économisant les accès mémoire qui auraient été nécessaires, ce qui n'est pas le cas des deux autres images $S_x$ et $S_x^2$ dont le calcul est quant à lui réalisé en appliquant la méthode des \textit{prefixsums} décrite dans \cite{BlellochTR90}.
+\subsection{Pré-calculs des images cumulées}
+Pour réduire la quantité de mémoire requise, nous avons choisi de ne pas générer l'image $S_1$ mais plutôt d'en calculer les valeurs à la volée. L'expression en est simple et le temps pris par les opérations élémentaires qu'elle met en jeu est largement compensé par le gain obtenu en économisant les accès mémoire qui auraient été nécessaires, ce qui n'est pas le cas des deux autres images $S_x$ et $S_x^2$ dont le calcul est quant à lui réalisé en appliquant une variante de la méthode des \textit{prefixsums} décrite dans \cite{BlellochTR90} et qui permet d'évaluer les expressions de l'équation \eqref{eq-img-cumul}.
Les sommations se font au niveau de chaque ligne de l'image, que l'on décompose en $n$ blocs de $bs$ pixels où $bs$ correspond aussi au nombre de threads exécutés par chaque bloc de la grille de calcul. La valeur $bs$ étant obligatoirement une puissance de 2 supérieure à 32, le bloc de pixels d'indice $n-1$ doit éventuellment être complété par des valeurs nulles. Chaque bloc de thread réalise son traitement indépendemment des autres, mais l'ensemble des sommes de bloc étant requise pour le calcul des sommes globales, une synchronisation est nécessaire à deux endroits du calcul. Nous avons choisi d'assurer ces synchronisations en découpant le traitement en trois \textit{kernels} distincts, rendant par la même occasion le code plus concis :
\begin{itemize}
\subfigure[Détail des opérations effectuées par le \textit{kernel} \texttt{compute\_block\_prefixes()}. La valeur $bs$ correspond au nombre de pixels de chaque bloc, qui est aussi le nombre de threads exécuté par chaque bloc de la grille de calcul.]{\resizebox{0.9\linewidth}{!}{ \input{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/GPUcumuls.pdf_t}}}\vspace{1cm}
\subfigure[Détail des opérations effectuées par le \textit{kernel} \texttt{scan\_blocksums()}.]{\resizebox{0.9\linewidth}{!}{ \input{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/GPUscansomblocs.pdf_t}}}\vspace{1cm}
\subfigure[Détail des opérations effectuées par le \textit{kernel} \texttt{add\_sums2prefixes()}.]{\resizebox{0.9\linewidth}{!}{ \input{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/GPUaddsoms2cumuls.pdf_t}}}
-\label{fig-calcul-cumuls}
\caption{Calcul des images cumulées $S_x$ et $S_x^2$ en trois étapes successives. a) cumul partiel bloc par bloc et mémorisation de la somme de chaque bloc. b) cumul sur le vecteur des sommes partielles. c) ajout des sommes partielles à chaque élément des blocs cumulés.}
+\label{fig-calcul-cumuls}
\end{figure}
Les gains de performance de cette implémentation GPU comparée à l'implémentation CPU/SSE2 sont ceux de la table \ref{tab-speedup-cumuls}, soit un GPU environ 7 fois plus rapide pour des images de taille 15 à 150 millions de pixels. L'influence de la taille d'image sur le gain est faible, mais on peut toutefois noter que plus l'image est grande plus le gain est important.
{\bf Accélération} &{\bf 6,5} &{\bf 6,9} &{\bf 7,0}\\
\bottomrule
\end{tabular}
- \caption{Accélération constatée, pour le calcul des images cumulées, de l'implémentation GPU par rapport à l'implémentation CPU de référence.}
+ \caption{Accélération constatée, pour le calcul des images cumulées, de l'implémentation GPU (C2070) par rapport à l'implémentation CPU de référence.}
\label{tab-speedup-cumuls}
\end{table}
-\subsection{Calcul des contribution des segments}
+\subsection{Calcul des contributions des segments}
-Le déplacement d'un des $N_n$ n\oe uds du contour $\Gamma$ vers l'une des 8 positions voisines permises, impose d'évaluer les contributions des 8 paires de segments associées, soit $16N_n$ segments pour la totalité du contour, que nous évaluons en parallèle au sein du \textit{kernel} \texttt{GPU\_compute\_segments\_contribs()}. Pour ce faire, chaque segment doit tout d'abord être discrêtisé en une suite de pixels puis, en conservant la règle \textit{1 pixel par thread} la contribution de chaque pixel est déterminée avant de toutes les additionner pour obtenir la contribution du segment.
+Le déplacement d'un des $N_n$ n\oe uds du contour $\Gamma$ vers l'une des 8 positions voisines permises, impose d'évaluer les contributions des 8 paires de segments associées, soit $16N_n$ segments pour la totalité du contour, que nous évaluons en parallèle au sein du \textit{kernel} \texttt{GPU\_compute\_segments\_contribs()}. Pour ce faire, chaque segment doit tout d'abord être discrétisé en une suite de pixels puis, en conservant la règle \textit{1 pixel par thread} la contribution de chaque pixel est déterminée avant de toutes les additionner pour obtenir la contribution du segment.
Les pixels représentant les n\oe uds font l'objet d'un traitement spécifique impliquant les codes de Freeman, pour ne pas fausser les contributions globales (voir paragraphe \ref{snake-cpu-impl}).
Pour optimiser l'exécution de ce kernel et réduire l'effet de la disparité des longueurs des segments, nous créons un motif régulier en mémoire, basé sur la longueur $npix_{max}$ du plus grand segment et moyennant le recours au remplissage par des valeurs neutres là où c'est nécessaire pour les autres segments.
\end{cases}
\]
-Dans notre implémentation, les calculs sont faits en mémoire partagée et la quantité nécessaire limite la taille de bloc admissible. Nous limitons celle-ci à 256 sur C1060 et 512 sur C2050. Toutefois, les tests ont montré que sur ces deux versions de l'architecture, La taille maximale conduisant aux meilleures performances est de 256 threads par bloc.
+Dans notre implémentation, les calculs sont faits en mémoire partagée et la quantité nécessaire limite la taille de bloc admissible. Nous limitons celle-ci à 256 sur C1060 et 512 sur C2050. Toutefois, les tests ont montré que sur ces deux versions de l'architecture, la taille maximale conduisant aux meilleures performances est de 256 threads par bloc.
Le \textit{kernel} \texttt{GPU\_compute\_segments\_contribs()} calcule alors en paralèle pour tous les segments les coordonnées de tous les pixels qui les composent. Nous mettons pour cela en \oe uvre l'algorithme de Bresenham, \textit{i.e} la méthode du segment semi-ouvert, en distinguant les cas où
\begin{itemize}
-\item la valeur absolue de la pente $k$ du segment à discrêtiser est supérieure à $1$; on applique alors la méthode au segment \textit{horizontal} semi-ouvert et on obtient un pixel par ligne.
-\item la valeur absolue de la pente $k$ du segment à discrêtiser est inférieure ou égale à $1$; on applique alors la méthode au segment \textit{vertical} semi-ouvert et on obtient un pixel par colonne.
+\item la valeur absolue de la pente $k$ du segment à discrétiser est supérieure à $1$; on applique alors la méthode au segment \textit{horizontal} semi-ouvert et on obtient un pixel par ligne.
+\item la valeur absolue de la pente $k$ du segment à discrétiser est inférieure ou égale à $1$; on applique alors la méthode au segment \textit{vertical} semi-ouvert et on obtient un pixel par colonne.
\end{itemize}
Cette distinction nous permet de conserver la règle \textit{1 pixel par thread} importante pour la régularité des motifs d'accès en mémoire et aussi pour \textit{charger} au maximum le GPU.
-La figure \ref{fig-structure-segment} représente la structure décrite ci-dessus pour la représentation en mémoire des segments à évaluer. La première ligne montre le détail du premier segment, avec la correspondance \textit{1 pixel par thread} et le découpage en un nombre de blocs suffisant pour permettre de décrire le plus long des segments.
-
-La seconde ligne présente l'ordre dans lequel sont concaténés les 16 groupes de blocs-segment associés au déplacement d'un n\oe ud particulier.
-
\begin{figure}
\centering
\resizebox{0.8\linewidth}{8cm}{ \input{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/contribs_segments.pdf_t}}
-\label{fig-structure-segment}
\caption{Structuration des données en mémoire du GPU pour l'évaluation en parallèle de l'ensemble des évolutions possibles du contour.}
+\label{fig-structure-segment}
\end{figure}
+
+La figure \ref{fig-structure-segment} représente la structure décrite ci-dessus pour la représentation en mémoire des segments à évaluer. La première ligne montre le détail du premier segment, avec la correspondance \textit{1 pixel par thread} et le découpage en un nombre de blocs suffisant pour permettre de décrire le plus long des segments.
+
+La seconde ligne présente l'ordre dans lequel sont concaténés les 16 groupes de blocs-segment associés au déplacement d'un n\oe ud particulier.
+
+
Aux deux dernières lignes est décrite la concaténation des ensembles de 16 blocs-segment, avec la particularité de séparer la description des n\oe uds d'indices pairs et ceux d'indices impairs. Cela permet de moins s'écarter de l'heuristique d'optimisation en vigueur dans la version séquentielle : les statistiques globales comme la valeur de critère $GL$ y sont recalculées après chaque déplacement, alors que dans le cas d'un traitement parallèle, les statistiques de référence ne sont calculées qu'après le déplacement simultané des $N_n$ n\oe uds; les résultats et la convergence en sont potentiellement affectés, comme l'illustrent les situations présentées à la figure \ref{fig-cycle-contribs-segments}, car les segments composant véritablement le contour après déplacement des n\oe uds n'ont pas nécessairement été évalués (segments en rouge dans la figure \ref{fig-cycle-contribs-segments}).
\begin{figure}
\subfigure[Déplacement en parallèle de tous les n\oe uds. Les segments du contour n'ont pas été évalués. On ne peut pas dire, a priori si le critère est amélioré.]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/cycle-contribs-segments-gpu1.png}}\quad
\subfigure[Déplacement en parallèle des n\oe uds impairs. Le critère est amélioré.]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/cycle-contribs-segments-gpu2.png}}\quad
\subfigure[Déplacement en parallèle des n\oe uds pairs. Un seul segment n'a pas été évalué.]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/cycle-contribs-segments-gpu3.png}}
-\label{fig-cycle-contribs-segments}
\caption{Comparaison des cycles de déplacement des n\oe uds. Ligne du haut : version séquentielle. Ligne du bas : version parallèle. Les segments en rouge sont des segments du contour non évalués, alors que ceux en pointillés sont les paires ayant reçu les meilleures évaluations parmi les 8 déplacements possibles des n\oe uds correspondant.}
+\label{fig-cycle-contribs-segments}
\end{figure}
La représentation en mémoire des segments conduit à avoir un certain nombre non prévisible de threads inactifs dans la grille, sans que cela soit préjudiciable aux performances car cela n'engendre pas de branches divergentes.
Pour obtenir les contributions des segments, \textit{i.e} les sommes des contributions des leurs pixels, une première phase de réduction partielle est effectuée au niveau de chaque bloc.
-Une synchronisation est alors nécessaire avant d'effectuer les sommes de l'ensemble des contributions partielles qui fournissent les contributions globales des segments. Le contour modifié est alors construit comme la suite des meilleures positions déterminées pour chaque n\oe ud, pour peu que ces nouvelles positions ne générent pas de croisement de segments.
+Une synchronisation est alors nécessaire avant d'effectuer les sommes de l'ensemble des contributions partielles qui fournissent les contributions globales des segments. Le contour modifié est alors construit comme la suite des meilleures positions déterminées pour chaque n\oe ud, pour peu que ces nouvelles positions ne génèrent pas de croisement de segments.
-La solution retenue pour vérifier l'absence de croisement est celle de l'implémentation séquentielle, parallélisée simplement par paire de segments. Cela n'apporte pas de véritable gain de performance par rapport à la version CPU, mais contraints de conserver les données en mémoire GPU pour limiter les transferts entre l'hôte et son périphérique, nous avons tâché de faire en sorte que cette fonctionnalité ne grêve pas les performances globales.
+La solution retenue pour vérifier l'absence de croisement est celle de l'implémentation séquentielle, parallélisée simplement par paire de segments. Cela n'apporte pas de véritable gain de performance par rapport à la version CPU, mais, contraints de conserver les données en mémoire GPU pour limiter les transferts entre l'hôte et son périphérique, nous avons fait en sorte que cette fonctionnalité ne grève pas les performances globales.
-Les calculs des statistiques globales du nouveau contour et du critère $GL$ sont effectués après l'obtention du nouveau contour. Les valeurs obtenues servent de référence pour les prochaines déformations du contour. Les techniques appliquées pour ces calculs sont de nouveau celles décrites au début ce paragraphe.
-Enfin l'ajout des nouveaux n\oe uds se fait simplement pour les segments suffisamment grands, en utilisant les coordonnées des pixels milieux mémorisées lors de la discrêtisation des segments.
+Les valeurs obtenues après détermination du nouveau contour, calcul des statistiques globales et évaluation du critère $GL$, servent de référence pour les prochaines déformations du contour. Les techniques appliquées pour ces calculs sont de nouveau celles décrites au début ce paragraphe.
+Enfin, l'ajout des nouveaux n\oe uds se fait simplement, pour les segments suffisamment grands, en utilisant les coordonnées des pixels milieux mémorisées lors de la discrétisation des segments.
\subsubsection{Cas particulier des segments dont la pente $k$ vérifie $|k|\leq 1$}
-Comme nous venons de le voir, les segments dont la pente $k$ vérifie $|k|\leq 1$ sont discrêtisés à raison de \textit{1 pixel par colonne} et comportent donc le plus souvent plusieurs pixels sur une ligne donnée, comme le montrent les schémas de la figure \ref{fig-segment-k<1}.
-D'après la formulation générale du snake faite au paragraphe \ref{snake-formulation}, le coefficient $C(i,j)$ est à appliquer en chaque point du contour. La technique de discrêtisation employée conduit à des coefficients $C(i,j)$ constants sur l'ensemble des pixels des segments dont la pente $k$ vérifie $|k|> 1$, mais ce n'est pas le cas pour ceux dont la pente $k$ est inférieure ou égale à $1$. Les quatre cas, un par quadrant, qui peuvent se présenter sont représentés à la figure \ref{fig-segment-k<1}.
+Comme nous venons de le voir, les segments dont la pente $k$ vérifie $|k|\leq 1$ sont discrétisés à raison de \textit{1 pixel par colonne} et comportent donc le plus souvent plusieurs pixels sur une ligne donnée, comme le montrent les schémas de la figure \ref{fig-segment-k<1}.
+
+D'après la formulation générale du snake faite au paragraphe \ref{snake-formulation}, le coefficient $C(i,j)$ est à appliquer en chaque point du contour. La technique de discrétisation employée conduit à des coefficients $C(i,j)$ constants sur l'ensemble des pixels des segments dont la pente $k$ vérifie $|k|> 1$, mais ce n'est pas le cas pour ceux dont la pente $k$ est inférieure ou égale à $1$. Les quatre cas, un par quadrant, qui peuvent se présenter sont représentés à la figure \ref{fig-segment-k<1}.
D'un point de vue opérationnel, on constate en se reportant à la table \ref{tab-freeman}, que tout pixel dont les voisins immédiats sont sur la même ligne à un coefficient $C(i,j)=0$ ($F_{in}=f_{out}=0$). Les deux pixels des extrémités, n'ayant quant à eux qu'un voisin sur la même ligne, ont un coefficient qui dépend du quadrant :
\begin{itemize}
\subfigure[Quadrants 1 et 4]{\includegraphics[width=7cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/coeffs-pixels2.png}}\quad
\subfigure[Quadrants 2 et 3]{\includegraphics[width=7cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/coeffs-pixels1.png}}\\
\subfigure{\includegraphics[width=8cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/coeffs-pixels3.png}}
-\label{fig-segment-k<1}
\caption{Détermination des coefficients $C(i,j)$ des pixels du contour.}
+\label{fig-segment-k<1}
\end{figure}
-Les accès en mémoire, dans les images cumulées, aux contributions des pixels de coefficient $C(i,j)=0$ sont évités et une contribution nulle leur est automatiquement attribuée dès l'étape de discrêtisation au sein du kernel \texttt{GPU\_compute\_segments\_contribs()}.
+Les accès en mémoire aux contributions des pixels de coefficient $C(i,j)=0$, dans les images cumulées, sont évités et une contribution nulle leur est automatiquement attribuée dès l'étape de discrétisation au sein du kernel \texttt{GPU\_compute\_segments\_contribs()}.
\subsection{Performances}
\item l'image cumulée $S_x$ pour 8 octets par pixel (1 entier long)
\item l'image cumulée $S_x^2$ pour 8 octets par pixel (1 entier long)
\end{itemize}
-auxquels il faut ajouter un maximum d'environ 50~Mo d'espace nécessaire à la mémorisation des variables temporaires des calculs et données diverses comme le contour lui-même (n\oe uds, milieus, Freemans, etc.).
+auxquels il faut ajouter un maximum d'environ 50~Mo d'espace nécessaire à la mémorisation des variables temporaires des calculs et données diverses comme le contour lui-même (n\oe uds, milieux, Freemans, etc.).
-Sur un GPU de type C1060 disposant de 3~Go de mémoire, cela permet de traiter des image jusqu'à presque 150 millions de pixels.
-Il est possible de réduire cette empreinte jusqu'à 13 octets par pixel, mais cela soulève la question de l'alignement des données en mémoire qui est sans objet en employant les type entier et entier long (32 et 64 bits) pour la représentation des données et qui permet de préserver les performances maximales des opérations et accès aux données du GPU. On pourrait tout de même porter ainsi la limite de taille de l'image d'entrée à 230 millions de pixels.
+Sur un GPU de type C1060 disposant de 3~Go de mémoire, cela permet de traiter des images jusqu'à presque 150 millions de pixels.
+Il est possible de réduire cette empreinte jusqu'à 13 octets par pixel, mais cela soulève la question de l'alignement des données en mémoire, sans objet si on emploie les types entier et entier long (32 et 64 bits) pour la représentation des données et qui permet de préserver les performances maximales des opérations et accès aux données du GPU. On pourrait tout de même porter ainsi la limite de taille de l'image d'entrée à 230 millions de pixels.
La convergence de notre implémentation intervient en un nombre généralement plus réduit d'itérations vers un contour final qui diffère par essence de celui obtenu avec la solution de référence. Ces effets sont la conséquence déjà abordée de l'heuristique d'optimisation appliquée à l'implémentation parallèle qui conduit à l'adoption de certains segments non évalués au préalable (voir fig. \ref{fig-cycle-contribs-segments}).
-Les comparaisons visuelle et de valeur du critère $GL$ qui peuvent être faites pour les images de taille inférieure à 4000$^2$ pixels nous renseignent toutefois sur la qualité de la segmentation obtenue. Pour les tailles au delà et jusqu'au maximum de 12000$^2$ pixels, le comportement est globalement conservé, mais on note qu'il n'est pas pertinent de permettre des tailles de segments trop petites vis à vis de la taille d'image, les déplacements des n\oe uds ne générant alors plus de variations significatives des contributions correspondantes.
+Les comparaisons visuelle et de valeur du critère $GL$ qui peuvent être faites pour les images de taille inférieure à 4000$^2$ pixels nous renseignent toutefois sur la qualité de la segmentation obtenue. Pour les tailles au delà et jusqu'au maximum de 12000$^2$ pixels, le comportement est globalement conservé, mais on note qu'il n'est pas pertinent de permettre des tailles de segments trop petites vis-à-vis de la taille d'image, les déplacements des n\oe uds ne générant alors plus de variations significatives des contributions correspondantes.
La figure \ref{fig-snakegpu-result} présente deux segmentations effectuées sur des images de respectivement 100 et 150 millions de pixels alors que la table \ref{tab-snake-results} résume les performances obtenues sur l'image du \textit{cochon} en différentes tailles.
\begin{table}[h]
\bottomrule
\end{tabular}
- \caption{Comparaison des temps d'exécution de l'implémentation GPU par rapport à l'implémentation CPU de référence, appliqués à une même image dilatée pour en adapter la taille.}
+ \caption{Comparaison des temps d'exécution de l'implémentation GPU (C2070) par rapport à l'implémentation CPU de référence, appliqués à une même image dilatée pour en adapter la taille.}
\label{tab-snake-results}
\end{table}
\centering
\subfigure[5 itérations en 0,59~s]{\includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/cochon_it5_points.png}}\quad
\subfigure[3 itérations en 0,35~s]{\includegraphics[height=5cm]{/home/zulu/Documents/these_gilles/THESE/Chapters/chapter3/img/Montserrat_3it.png}}
+ \caption{Segmentations de grandes images, avec le contour intial transposé de celui de la figure \ref{fig-snakecpu-cochon512}. a) image du cochon en 100~MP. b) image satellite de l'île de Montserrat en 150~MP.}
\label{fig-snakegpu-result}
- \caption{Segmentations de grandes images, avec le contour intial transposé de celui de la figure \ref{fig-snakecpu-cochon512}. a) image de 100~MP. b) image de 150~MP.}
\end{figure}
-\subsection{Discussion sur l'initialisation}
+\subsection{Détermination intelligente du contour initial}
Nous avons déjà discuté de l'influence du contour initial sur le résultat de la segmentation, mais il faut ajouter que la durée d'exécution est aussi impactée par le choix du contour initial, dans des proportions qui peuvent être importantes selon la distance, la taille et dans une moindre mesure la forme de la cible.
Ces effets se mesurent lors de la première itération, celle qui va cerner grossièrement la cible avec un polygone à quatre cotés. Si le contour initial se trouve très éloigné, comme dans la situation de la figure \ref{fig-snakecpu-cochon4kc3}, notre choix maintenant habituel d'un rectangle près des bords de l'image s'avère peu adapté et conduit à une première itération très longue. Dans un tel cas, pour une image de 10000$^2$ pixels, si la cible est un carré de 1000$^2$ pixels dont le sommet du bas à droite se confond avec celui du contour et que l'on approche par pas de 64 pixels, on devra dans le meilleur des cas déplacer les 4 n\oe uds du contour 110 fois de suite avant de pouvoir passer à la deuxième itération. Un pas de 128 permet de réduire ces valeurs, mais l'expérience montre qu'au delà, l'approche initiale de la cible est trop grossière et les itérations suivantes en pâtissent pour un résultat souvent dégradé.
\end{figure}
\subsection{Conclusion}
-Nous avons conçu une implémentation parallèle de \textit{snake} polygonal orienté régions, ce qui à notre connaissance n'avait encore pas été réalisé, aucune publication n'étant parue à ce sujet.
-
+Nous avons conçu une implémentation parallèle de \textit{snake} polygonal orienté régions, ce qui n'avait encore pas été réalisé, n'ayant recensé à ce jour aucune publication y faisant référence. Elle a fait l'objet d'une publication et d'une communication à la conférence \textit{Computer and Information Technology} (voir \cite{6036776}).
Les objectifs étaient d'étendre les capacités de traitement de l'implémentation CPU de référence en terme de taille d'image en conservant des temps d'exécution acceptables ce qui, de l'avis des auteurs de la version CPU, impose de se situer \textit{a minima} sous la seconde pour pouvoir envisager l'intégration dans une application interactive.
-Sur ce point, les performances de notre version sont satisfaisantes, puisque nous avons repoussé la limite de taille de 16 à 150 millions de pixels et parvenons à segmenter ces grandes images en moins d'une seconde. Le temps de calcul dépend très fortement du contenu de l'image et la segmentation est le plus souvent obtenu en un temps plus court, mais il n'est pas impensable que certaines situations particulières puissent conduire à dépasser cette barre symoblique.
+Sur ce point, les performances de notre version sont satisfaisantes, puisque nous avons repoussé la limite de taille de 16 à 150 millions de pixels et parvenons à segmenter ces grandes images en moins d'une seconde. Le temps de calcul dépend très fortement du contenu de l'image et la segmentation est le plus souvent obtenue en un temps plus court.
-L'emploi du GPU dans notre implémentation ne parvient pas à être optimal car, par essence, la répartition des pixels d'intérêt est mouvante et ne permet pas de construire des accès coalescent à la mémoire. Les opérations de type réduction sont également nombreuses et ne sont pas les plus efficaces sur GPU. Dans notre situation, elles peuvent même représenter une perte de performances car effectuées sur des vecteurs de tailles insuffisantes pour que le GPU surclasse le CPU.
+L'emploi du GPU dans notre implémentation ne parvient pas à être optimal car, par essence, la répartition des pixels d'intérêt est mouvante et ne permet pas de construire des accès mémoire coalescents. Les opérations de type réduction sont également nombreuses et ne sont pas les plus efficaces sur GPU. Dans notre situation, elles peuvent même représenter une perte de performances, car effectuées sur des vecteurs de tailles insuffisantes.
-S'il s'agit de parler d'accélération, notre implémentation divise les temps de traitement précédents par un facteur allant de 6 à 15 selon l'image et le contour initial adopté. Rappelons encore que l'implémentation CPU de référence n'est pas une implémentation naïve, mais une solution optimisée employant déjà les capacités de parallélisme des microprocesseurs modernes et représentant l'\textit{l'état de l'art} du domaine ; il n'était pas trivial d'en surpasser les performances, même avec un GPU.
+S'il s'agit de parler d'accélération, notre implémentation divise les temps de traitement précédents par un facteur allant de 6 à 15 selon l'image et le contour initial adopté. Rappelons encore que l'implémentation CPU de référence n'est pas une implémentation naïve, mais une solution optimisée employant déjà les capacités de parallélisme des microprocesseurs modernes et représentant l'\textit{état de l'art} du domaine ; il n'était pas trivial d'en surpasser les performances, même avec un GPU.
-Par nécessité, notre solution s'écarte cependant quelque peu de l'algorithme original pour permettre les déplacements simultanés des l'ensemble des sommets du polygone. Ce faisant, la décroissance du critère n'est pas certaine à toutes les étapes de la segmantation et l'on observe cette conséquence en particulier lors des dernière itérations lorsque le pas de déplacement et aussi les variations du critère sont faibles. Ce comportement, lorsqu'il est observé, provoque parfois la convergence prématurée de la segmentation, mais n'influe toutefois que sur quelques n\oe uds et dans la mesure d'un pixel.
+Par nécessité, notre solution s'écarte cependant quelque peu de l'algorithme original pour permettre les déplacements simultanés de l'ensemble des sommets du polygone. Ce faisant, la décroissance du critère n'est pas certaine à toutes les étapes de la segmentation et l'on observe cette conséquence, en particulier lors des dernière itérations lorsque le pas de déplacement et aussi les variations du critère sont faibles. Ce comportement, lorsqu'il est observé, provoque parfois la convergence prématurée de la segmentation, mais n'influe toutefois que sur quelques n\oe uds et le contour ainsi obtenu ne s'éloigne que très peu du contour de référence.
-La technique que nous avons proposée pour la détermination du contour initial permet d'augmenter encore les performances, surtout dans les grandes images lorsque la cible est petite vis à vis des dimensions de l'image. Nous ne sommes pas parvenu à concevoir une technique permettant de prévoir si la recherche intelligente du contour intial serait génératrice de gain de performance.
+La technique que nous avons proposée pour la détermination intelligente du contour initial permet d'augmenter encore les performances, surtout dans les grandes images lorsque la cible est petite vis-à-vis des dimensions de l'image. Il reste toutefois à concevoir une technique permettant de prévoir si cette recherche intelligente serait génératrice de gain de performance.
-L'analyse fine des séquences de segmentation montre enfin que les première étapes, qui mettent en \oe uvre les segments les plus longs, générent des grilles de calcul suffisamment chargées et homogènes pour présenter de bonnes performances. Les dernière étapes, en revanche, traitent d'une plus grand nombre de petits segments, générant beaucoup de trous dans la grille de calcul et induisant des performances moindres. L'accéleration globale obtenue est ainsi généralement le fruit du calcul des images cumulées et des toutes premières étapes de déplacements. Une possiblité qui reste à explorer serait de construire une version hybride réalisant le début de la segmentation sur GPU, puis terminant sur le CPU hôte. Ceci est envisageable en raison du très petit volume de données à transférer que constituent les paramètres du contour (2 ko pour 100 n\oe uds).
+L'analyse fine des séquences de segmentation montre enfin que les première étapes, qui mettent en \oe uvre les segments les plus longs, génèrent des grilles de calcul suffisamment chargées et homogènes pour présenter de bonnes performances. Les dernières étapes, en revanche, traitent d'un plus grand nombre de petits segments, générant beaucoup de trous dans la grille de calcul, induisant des performances moindres. L'accélération globale obtenue est ainsi généralement le fruit du calcul des images cumulées et des toutes premières étapes de déplacements. Une possibilité qui reste à explorer serait de construire une version hybride réalisant le début de la segmentation sur GPU, puis la terminant sur le CPU hôte. Ceci est envisageable en raison du très petit volume de données à transférer que constituent les paramètres du contour (2~ko pour 100 n\oe uds).