-Ce voisinage, dont la forme, l'étendue et le niveau de gris sont déterminés par maximum de vraisemblance, appelé une \textit{isoline} est une estimation locale de la ligne de niveau à laquelle appartient le pixel concerné.
-Cette technique a montré qu'elle permettait de réduire très significativement le niveau de bruit tout en préservant les contours des objets. Elle s'est en revanche averée gourmande en ressources, ce qui a initialement conduit les auteurs a réduire la résolution de calcul des \textit{isolines} par application d'un maillage sur l'image corrompue.
-Malgré cela, les temps de calcul demeuraient prohibitfs, avec une image de 2 millions de pixels traitée en 1 minute par un PIII-1GHz.
-Comme nous l'avons déjà évoqué, l'amélioration des performances des microprocesseurs permet aujourd'hui de réduire assez considérablement ce temps de calcul, mais la résolution des images a traiter à, elle aussi, crû dans des proportions comparables, laissant les termes du compromis qualité/performances inchangés.
+Ce voisinage, dont la forme, l'étendue et le niveau de gris sont déterminés par maximum de vraisemblance, appelé une \textit{isoline}, est une estimation locale de la ligne de niveau à laquelle appartient le pixel concerné.
+Cette technique a montré qu'elle permettait de réduire très significativement le niveau de bruit tout en préservant les contours des objets. Elle s'est en revanche averée gourmande en ressources, ce qui a initialement conduit les auteurs à réduire la résolution de calcul des \textit{isolines} par application d'un maillage sur l'image bruitée.
+Malgré cela, les temps de calcul demeuraient prohibitifs, avec une image de 2 millions de pixels traitée en 1 minute par un PIII-1GHz.
+Comme nous l'avons déjà évoqué, l'amélioration des performances des microprocesseurs permet aujourd'hui de réduire assez considérablement ce temps de calcul. Cependant, la résolution des images à traiter à crû dans des proportions comparables, laissant les termes du compromis qualité/performance inchangés.