La dimension de l'image à traiter a également un effet sur le résultat et naturellement sur le temps de calcul. Si l'on conserve la même stratégie d'optimisation que pour la segmentation de l'image 512$\times$512 pixels et un contour initial dont les cotés sont à une distance des bords équivalente à 10\% des cotés de l'image, le résultat sur une image identique de 4000$^2$4000 pixels est obtenu en 1,3~s avec 1246 n\oe uds ; il est reproduit à la figure \ref{fig-snakecpu-cochon4ka}. Le nombre de pixels appartenant à la région cible est tel que l'amplitude des déplacements autorisés pour chaque n\oe ud ($d$) peut se révéler trop faible vis-à-vis du seuil d'acceptation des mouvements. On observe que les zones à fort contraste ne posent pas de problème et sont détourées de la même manière, alors que dans le bas de l'image où figure une zone de faible contraste (ombre), la cible se trouve maintenant quelque peu surévaluée en surface là ou elle était plutôt sous évaluée dans l'image en 512$\times$512 pixels.
Ces deux contours correspondent chacun à un minimum local vers lequel l'algorithme du snake a convergé, mais les variances associées demeurent extrêmement proches.
On parvient à un résultat très proche beaucoup plus rapidement en adaptant les paramètres à la taille de l'image, comme le montre par exemple la segmentation de la figure \ref{fig-snakecpu-cochon4kb}, effectuée avec $d_{max}=128$ et $l_{min}=32$ et qui converge vers un contour de 447 n\oe uds en moins de 0,7~s.
La dimension de l'image à traiter a également un effet sur le résultat et naturellement sur le temps de calcul. Si l'on conserve la même stratégie d'optimisation que pour la segmentation de l'image 512$\times$512 pixels et un contour initial dont les cotés sont à une distance des bords équivalente à 10\% des cotés de l'image, le résultat sur une image identique de 4000$^2$4000 pixels est obtenu en 1,3~s avec 1246 n\oe uds ; il est reproduit à la figure \ref{fig-snakecpu-cochon4ka}. Le nombre de pixels appartenant à la région cible est tel que l'amplitude des déplacements autorisés pour chaque n\oe ud ($d$) peut se révéler trop faible vis-à-vis du seuil d'acceptation des mouvements. On observe que les zones à fort contraste ne posent pas de problème et sont détourées de la même manière, alors que dans le bas de l'image où figure une zone de faible contraste (ombre), la cible se trouve maintenant quelque peu surévaluée en surface là ou elle était plutôt sous évaluée dans l'image en 512$\times$512 pixels.
Ces deux contours correspondent chacun à un minimum local vers lequel l'algorithme du snake a convergé, mais les variances associées demeurent extrêmement proches.
On parvient à un résultat très proche beaucoup plus rapidement en adaptant les paramètres à la taille de l'image, comme le montre par exemple la segmentation de la figure \ref{fig-snakecpu-cochon4kb}, effectuée avec $d_{max}=128$ et $l_{min}=32$ et qui converge vers un contour de 447 n\oe uds en moins de 0,7~s.