-\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{27}{figure.2.11}}
-\newlabel{fig-meanshift-cochon}{{2.11}{27}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 à 5. Le volume minimal admis pour un segment est fixé à 100 pixels. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.11}{}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{27}{figure.2.11}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{27}{figure.2.11}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{27}{figure.2.11}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{27}{figure.2.11}}
-\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.4}Les contours actifs, ou \textit {snakes}}{27}{subsection.2.5.4}}
-\citation{snake-kass-1988}
-\citation{level-sets-osher-sethian-1988}
-\citation{narrow-band-level-set}
-\citation{fast_marching_sethian}
-\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticti\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{28}{figure.2.12}}
-\newlabel{fig-snake-tradi-cochon}{{2.12}{28}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les paramètres d'élastictié, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0.1 et 5. \relax }{figure.2.12}{}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{28}{figure.2.12}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{28}{figure.2.12}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{28}{figure.2.12}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{28}{figure.2.12}}
-\citation{cohenSMIE93}
-\citation{ronfard}
-\citation{snake-bertaux}
-\citation{amfm-2010}
-\citation{watershed}
-\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.5}M\IeC {\'e}thodes hybrides}{29}{subsection.2.5.5}}
-\@writefile{toc}{\contentsline {section}{\numberline {2.6}L'\IeC {\'e}tat de l'art des impl\IeC {\'e}mentations GPU}{29}{section.2.6}}
-\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{31}{chapter.3}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.3}kernel-means, mean-shift et apparent\IeC {\'e}s}{26}{subsection.2.5.3}}
+\citation{macqueen1967some}
+\citation{agarwal2002exact}
+\citation{arora1998approximation}
+\citation{pelleg2000x}
+\citation{fukunaga1975estimation}
+\citation{cheng1995mean}
+\citation{foley1994introduction}
+\citation{comaniciu1999mean}
+\citation{comaniciu2002mean}
+\citation{keselman1998extraction}
+\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{27}{figure.2.11}}
+\newlabel{fig-kmeans-cochon}{{2.11}{27}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 à 5. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.11}{}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{27}{figure.2.11}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{27}{figure.2.11}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{27}{figure.2.11}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{27}{figure.2.11}}
+\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{28}{figure.2.12}}
+\newlabel{fig-meanshift-cochon}{{2.12}{28}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 à 5. Le volume minimal admis pour un segment est fixé à 100 pixels. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.12}{}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{28}{figure.2.12}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{28}{figure.2.12}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{28}{figure.2.12}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{28}{figure.2.12}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.4}Les contours actifs, ou \textit {snakes}}{28}{subsection.2.5.4}}
+\citation{KassWT88}
+\citation{osher1988fronts}
+\citation{adalsteinsson1994fast}
+\citation{sethian1996fast}
+\citation{cohen1993surface}
+\citation{ronfard1994region}
+\citation{ChesnaudRB99}
+\citation{GallandBR03}
+\citation{GermainR01}
+\citation{arbelaez2011contour}
+\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticti\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{30}{figure.2.13}}
+\newlabel{fig-snake-tradi-cochon}{{2.13}{30}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les paramètres d'élastictié, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0.1 et 5. \relax }{figure.2.13}{}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{30}{figure.2.13}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.13}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.13}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{30}{figure.2.13}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.5}M\IeC {\'e}thodes hybrides}{30}{subsection.2.5.5}}
+\citation{fluck2006gpu}
+\citation{lefohn2003interactive}
+\@writefile{toc}{\contentsline {section}{\numberline {2.6}Les impl\IeC {\'e}mentations GPU des techniques de segmentation}{31}{section.2.6}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.1}Calcul d'histogramme}{31}{subsection.2.6.1}}
+\citation{Vineet:2009:FMS:1572769.1572796}
+\citation{dixit2005gpu}
+\citation{4563095}
+\citation{kohli2007dynamic}
+\citation{graphcutscuda}
+\citation{graphcutscuda}
+\citation{4563095}
+\citation{graphcutscuda}
+\citation{graphcutscuda}
+\citation{che2008performance}
+\citation{kddcup99}
+\citation{5170921}
+\citation{che2008performance}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.2}Partitionnement de graphe}{32}{subsection.2.6.2}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.3}K-means, mean-shift et apparent\IeC {\'e}s}{32}{subsection.2.6.3}}
+\citation{kmeansgpuopengl}
+\citation{li2009mean}
+\citation{vedaldi2008quick}
+\citation{fulkerson2012really}
+\citation{fulkerson2012really}
+\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces \IeC {\'E}volution du nombre de pixels actifs pour les it\IeC {\'e}ration successives de l'impl\IeC {\'e}mentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs apr\IeC {\`e}s chaque it\IeC {\'e}ration, en blanc.}}{33}{figure.2.14}}
+\newlabel{fig-graphcutscuda}{{2.14}{33}{Évolution du nombre de pixels actifs pour les itération successives de l'implémentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs après chaque itération, en blanc}{figure.2.14}{}}
+\citation{fulkerson2012really}
+\citation{fulkerson2012really}
+\citation{xiao2010efficient}
+\citation{lefohn2003inter}
+\citation{lefohn2003interactive}
+\citation{rumpf2001level}
+\citation{rumpf2001level}
+\citation{lefohn2005streaming}
+\citation{cates2004gist}
+\citation{jeong2009scalable}
+\citation{jeong2009scalable}
+\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces Segmentation d'une image couleur de 512$\times $512 pixels par l'impl\IeC {\'e}mentation GPU quick-shift de \cite {fulkerson2012really}.}}{34}{figure.2.15}}
+\newlabel{fig-quickshift-yo}{{2.15}{34}{Segmentation d'une image couleur de 512$\times $512 pixels par l'implémentation GPU quick-shift de \cite {fulkerson2012really}}{figure.2.15}{}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image originale}}}{34}{figure.2.15}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\tau =10$ et $\sigma =2$}}}{34}{figure.2.15}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\tau =10$ et $\sigma =10$}}}{34}{figure.2.15}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\tau =20$ et $\sigma =10$}}}{34}{figure.2.15}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.4}Snakes et Level set}{34}{subsection.2.6.4}}
+\citation{Roberts:2010:WGA:1921479.1921499}
+\citation{lefohn2003inter}
+\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces Segmentation d'une image couleur de 2256$\times $3008 pixels.}}{35}{figure.2.16}}
+\newlabel{fig-meanshift-castle}{{2.16}{35}{Segmentation d'une image couleur de 2256$\times $3008 pixels}{figure.2.16}{}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image originale}}}{35}{figure.2.16}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift standard}}}{35}{figure.2.16}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift kd-tree}}}{35}{figure.2.16}}
+\newlabel{fig-l7-brain}{{2.17(a)}{36}{Subfigure 2 2.17(a)\relax }{subfigure.2.17.1}{}}
+\newlabel{sub@fig-l7-brain}{{(a)}{36}{Subfigure 2 2.17(a)\relax }{subfigure.2.17.1}{}}
+\newlabel{fig-l7-reins}{{2.17(b)}{36}{Subfigure 2 2.17(b)\relax }{subfigure.2.17.2}{}}
+\newlabel{sub@fig-l7-reins}{{(b)}{36}{Subfigure 2 2.17(b)\relax }{subfigure.2.17.2}{}}
+\@writefile{lof}{\contentsline {figure}{\numberline {2.17}{\ignorespaces Segmentation d'images issues d'examens IRM par la m\IeC {\'e}thode des level set \IeC {\`a} bande \IeC {\'e}troite.}}{36}{figure.2.17}}
+\newlabel{fig-meanshift-castle}{{2.17}{36}{Segmentation d'images issues d'examens IRM par la méthode des level set à bande étroite}{figure.2.17}{}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Cerveau 256$\times $256$\times $256 en 7~s}}}{36}{figure.2.17}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Reins et aorte, 256$\times $256$\times $272 en 16~s}}}{36}{figure.2.17}}
+\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{37}{chapter.3}}