]> AND Private Git Repository - these_gilles.git/blobdiff - THESE/Chapters/chapter5/chapter5.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
final avant rapport
[these_gilles.git] / THESE / Chapters / chapter5 / chapter5.tex
index a5581b8d010b7103366136a4788af1d2627b442f..88ec0cbd84c0d0da94e7b08a5a55566579f1b735 100644 (file)
@@ -10,7 +10,7 @@ Le chapitre \ref{ch-GPU}, présentant l'architecture et les caractéristiques pr
 Dans le cadre de nos travaux, cette mémorisation sous forme de texture s'est montrée la plus performante pour les images d'entrée.
 
 Les images de sortie filtrées sont produites en mémoire globale standard, hors texture, puis copiées vers une zone de mémoire de l'hôte (CPU) dont les pages sont réservées à l'avances et verrouillées, ce qui évite les pertes de performances liées aux défauts de page. L'algorithme \ref{algo-median-memcpy} synthétise ces pratiques en introduisant aussi les notations pour la suite. 
 Dans le cadre de nos travaux, cette mémorisation sous forme de texture s'est montrée la plus performante pour les images d'entrée.
 
 Les images de sortie filtrées sont produites en mémoire globale standard, hors texture, puis copiées vers une zone de mémoire de l'hôte (CPU) dont les pages sont réservées à l'avances et verrouillées, ce qui évite les pertes de performances liées aux défauts de page. L'algorithme \ref{algo-median-memcpy} synthétise ces pratiques en introduisant aussi les notations pour la suite. 
-Cet emploi de mémoire que l'on qualifiera dorénavant de \og non paginée \fg{}, apporte un gain de temps important dans les transferts même s'il peut aussi s'avérer limitant lorsqu'il s'agit de traiter de très grands volumes de données. Les quantités de mémoire vive dont disposent les ordinateurs modernes permettent cependant de traiter sans restriction des images de plusieurs centaines de millions de pixels. Nos essais ont été conduits avec des images d'au maximum 100~MP.
+Cet emploi de mémoire que l'on qualifiera dorénavant de \og non paginée \fg{}, apporte un gain de temps important dans les transferts même s'il peut aussi s'avérer limitant lorsqu'il s'agit de traiter de très grands volumes de données, puisqu'il empêche d'accéder à l'ensemble de la mémoire vive de l'hôte CPU. Les quantités de mémoire vive dont disposent les ordinateurs modernes permettent cependant de traiter sans restriction des images de plusieurs centaines de millions de pixels. Nos essais ont été conduits avec des images d'au maximum 100~MP.
 
 \begin{algorithm}
 %\SetNlSty{textbf}{}{:}
 
 \begin{algorithm}
 %\SetNlSty{textbf}{}{:}
@@ -59,7 +59,7 @@ Le tableau \ref{tab-median-memcpy} donne le détail des temps de transfert pour
 
 \section{Utilisation des registres}
 
 
 \section{Utilisation des registres}
 
-En traitement d'image, les filtres médians sont beaucoup employés avec des tailles de fenêtres modestes comme pré-traitement, éventuellement itératif, ou bien avec de grandes tailles de fenêtres pour de l'estimation d'intensité d'arrière plan. Les taille intermédiaires, de l'ordre de quelques dizaines de pixels, ne sont à notre connaissance pas employées.
+En traitement d'image, les filtres médians sont beaucoup employés avec des tailles de fenêtres modestes comme pré-traitement, éventuellement itératif, ou bien avec de grandes tailles de fenêtres pour de l'estimation d'intensité d'arrière plan. Les taille intermédiaires, de l'ordre de quelques dizaines de pixels, ne sont à notre connaissance que rarement employées.
 
 Un filtre médian de petite taille ne réalise que peu d'opérations, sans complexité de surcroît, et doit donc atteindre des niveaux de performances élevés.
 Le cadre général des traitements sur GPU présenté au paragraphe \ref{sec-bilateral} n'est alors plus pertinent, pour deux raisons :
 
 Un filtre médian de petite taille ne réalise que peu d'opérations, sans complexité de surcroît, et doit donc atteindre des niveaux de performances élevés.
 Le cadre général des traitements sur GPU présenté au paragraphe \ref{sec-bilateral} n'est alors plus pertinent, pour deux raisons :