]> AND Private Git Repository - these_gilles.git/blobdiff - THESE/these.lof
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
19 oct
[these_gilles.git] / THESE / these.lof
index 6eae3f910aabe5bb87c671ff06d533b2759ae436..a2878b37a9f9700be1f0e3fbe93b26aa87b22430 100644 (file)
 \select@language {french}
 \addvspace {10\p@ }
 \addvspace {10\p@ }
-\contentsline {figure}{\numberline {2.1}{\ignorespaces Images 256$\times $256 en niveau de gris 8 bits utilis\IeC {\'e}es pour l'illustration des propri\IeC {\'e}t\IeC {\'e}s des filtres. a) l'image de r\IeC {\'e}f\IeC {\'e}rence non bruit\IeC {\'e}e. b) l'image corrompue par un bruit gaussien d'\IeC {\'e}cart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel \IeC {\`a} 25\%.}}{14}{figure.2.1}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sans bruit}}}{14}{figure.2.1}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Bruit gaussien $\sigma =25$, PSNR=22.3~dB MSSIM=0.16}}}{14}{figure.2.1}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Bruit impulsionnel 25\%, PSNR=9.48~dB MSSIM=0.04}}}{14}{figure.2.1}
-\contentsline {figure}{\numberline {2.2}{\ignorespaces Filtrage par convolution.}}{15}{figure.2.2}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Moyenneur 3$\times $3, PSNR=27.6dB MSSIM=0.34}}}{15}{figure.2.2}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Moyenneur 5$\times $5, PSNR=27.7dB MSSIM=0.38}}}{15}{figure.2.2}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Filtre gaussien 3$\times $3, PSNR=27.4dB MSSIM=0.33}}}{15}{figure.2.2}
-\contentsline {figure}{\numberline {2.3}{\ignorespaces R\IeC {\'e}duction du bruit impulsionnel par filtre m\IeC {\'e}dian.}}{16}{figure.2.3}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 une passe, PSNR=26.4~dB MSSIM=0.90}}}{16}{figure.2.3}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 deux passes, PSNR=34.4~dB MSSIM=0.98}}}{16}{figure.2.3}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {M\IeC {\'e}dian 5$\times $5 une passe, PSNR=35.1~dB MSSIM=0.98}}}{16}{figure.2.3}
-\contentsline {figure}{\numberline {2.4}{\ignorespaces R\IeC {\'e}duction de bruit gaussien par filtrage bilat\IeC {\'e}ral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les \IeC {\'e}carts type des fonctions gaussiennes de pond\IeC {\'e}ration spatiale et d'intensit\IeC {\'e}.}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.1$, PSNR=25.6~dB MSSIM=0.25}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.5$, PSNR=28.0~dB MSSIM=0.36}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=1.0$, PSNR=27.9~dB MSSIM=0.36}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.1$, PSNR=26.7~dB MSSIM=0.29}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.5$, PSNR=27.9~dB MSSIM=0.39}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=1.0$, PSNR=27.5~dB MSSIM=0.38}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(g)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.1$, PSNR=26.8~dB MSSIM=0.29}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(h)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.5$, PSNR=26.8~dB MSSIM=0.37}}}{17}{figure.2.4}
-\contentsline {subfigure}{\numberline {(i)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=1.0$, PSNR=25.9~dB MSSIM=0.36}}}{17}{figure.2.4}
-\contentsline {figure}{\numberline {2.5}{\ignorespaces Filtrage par d\IeC {\'e}composition en ondelettes et seuillage dur des coefficients inf\IeC {\'e}rieurs au seuil $T$.}}{18}{figure.2.5}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$T=20$, PSNR=26.9~dB MSSIM=0.30}}}{18}{figure.2.5}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$T=35$, PSNR=27.6~dB MSSIM=0.36}}}{18}{figure.2.5}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$T=70$, PSNR=26.7~dB MSSIM=0.37}}}{18}{figure.2.5}
-\contentsline {figure}{\numberline {2.6}{\ignorespaces Filtrage par NL-means pour diff\IeC {\'e}rentes combinaisons des param\IeC {\`e}tres de similarit\IeC {\'e} $f$ et de non localit\IeC {\'e} $t$.}}{19}{figure.2.6}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$f=2$ et $t=2$, PSNR=28.5~dB MSSIM=0.37}}}{19}{figure.2.6}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$f=2$ et $t=5$, PSNR=28.6~dB MSSIM=0.38}}}{19}{figure.2.6}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$f=5$ et $t=2$, PSNR=29.0~dB MSSIM=0.39}}}{19}{figure.2.6}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$f=5$ et $t=5$, PSNR=29.0~dB MSSIM=0.40}}}{19}{figure.2.6}
-\contentsline {figure}{\numberline {2.7}{\ignorespaces Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41}}{19}{figure.2.7}
-\contentsline {figure}{\numberline {2.8}{\ignorespaces Performances relatives des filtres m\IeC {\'e}dians impl\IeC {\'e}ment\IeC {\'e}s sur GPU dans libJacket/ArrayFire, PCMF et BVM et ex\IeC {\'e}cut\IeC {\'e}s sur deux mod\IeC {\`e}le de g\IeC {\'e}n\IeC {\'e}rations diff\IeC {\'e}rentes.}}{21}{figure.2.8}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sur GPU GTX260. Courbe tir\IeC {\'e}e de \cite {5402362}}}}{21}{figure.2.8}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Sur GPU C2075. Courbe tir\IeC {\'e}e de \cite {sanchez2013highly}}}}{21}{figure.2.8}
-\contentsline {figure}{\numberline {2.9}{\ignorespaces Illustration pr\IeC {\'e}-chargement en m\IeC {\'e}moire partag\IeC {\'e}e mise en \oe uvre dans \cite {zheng2011performance} pour l'impl\IeC {\'e}mentation, entre autres, du filtre bilat\IeC {\'e}ral. a) en vert le bloc de threads associ\IeC {\'e} aux pixels centraux. b-e) les blocs de pixels successivement pr\IeC {\'e}-charg\IeC {\'e}s en m\IeC {\'e}moire partag\IeC {\'e}e. f) la configuration finale de la ROI en m\IeC {\'e}moire partag\IeC {\'e}e.}}{22}{figure.2.9}
-\contentsline {figure}{\numberline {2.10}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{25}{figure.2.10}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{25}{figure.2.10}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{25}{figure.2.10}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{25}{figure.2.10}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{25}{figure.2.10}
-\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{25}{figure.2.10}
-\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{25}{figure.2.10}
-\contentsline {figure}{\numberline {2.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{27}{figure.2.11}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{27}{figure.2.11}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{27}{figure.2.11}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{27}{figure.2.11}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{27}{figure.2.11}
-\contentsline {figure}{\numberline {2.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{28}{figure.2.12}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{28}{figure.2.12}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{28}{figure.2.12}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{28}{figure.2.12}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{28}{figure.2.12}
-\contentsline {figure}{\numberline {2.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{29}{figure.2.13}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{29}{figure.2.13}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{29}{figure.2.13}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{29}{figure.2.13}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{29}{figure.2.13}
-\contentsline {figure}{\numberline {2.14}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticit\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{30}{figure.2.14}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{30}{figure.2.14}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.14}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.14}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{30}{figure.2.14}
-\contentsline {figure}{\numberline {2.15}{\ignorespaces \IeC {\'E}volution du nombre de pixels actifs pour les it\IeC {\'e}ration successives de l'impl\IeC {\'e}mentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs apr\IeC {\`e}s chaque it\IeC {\'e}ration, en blanc.}}{33}{figure.2.15}
-\contentsline {figure}{\numberline {2.16}{\ignorespaces Segmentation d'une image couleur de 512$\times $512 pixels par l'impl\IeC {\'e}mentation GPU quick-shift de \cite {fulkerson2012really}.}}{35}{figure.2.16}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{35}{figure.2.16}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\tau =10$ et $\sigma =2$}}}{35}{figure.2.16}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\tau =10$ et $\sigma =10$}}}{35}{figure.2.16}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\tau =20$ et $\sigma =10$}}}{35}{figure.2.16}
-\contentsline {figure}{\numberline {2.17}{\ignorespaces Segmentation d'une image couleur de 2256$\times $3008 pixels.}}{35}{figure.2.17}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{35}{figure.2.17}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift standard}}}{35}{figure.2.17}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift kd-tree}}}{35}{figure.2.17}
-\contentsline {figure}{\numberline {2.18}{\ignorespaces Segmentation d'images issues d'examens IRM par la m\IeC {\'e}thode des level set \IeC {\`a} bande \IeC {\'e}troite.}}{37}{figure.2.18}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Cerveau 256$\times $256$\times $256 en 7~s}}}{37}{figure.2.18}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Reins et aorte, 256$\times $256$\times $272 en 16~s}}}{37}{figure.2.18}
-\contentsline {figure}{\numberline {2.19}{\ignorespaces Segmentation d'une image d'\IeC {\'e}paule en 1024$^2$ pixels issue d'un examen IRM par l'impl\IeC {\'e}mentation du snake GVF de \cite {snakegvf06}. Le contour est repr\IeC {\'e}sent\IeC {\'e} en rougeet le contour final est obtenu en 11~s. }}{37}{figure.2.19}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour initial}}}{37}{figure.2.19}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final}}}{37}{figure.2.19}
-\contentsline {figure}{\numberline {2.20}{\ignorespaces Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}}}{38}{figure.2.20}
+\contentsline {figure}{\numberline {2.1}{\ignorespaces Comparaison des structures d'un c\oe ur de GPU et d'un c\oe ur de CPU (d'apr\IeC {\`e}s \cite {CUDAPG}).}}{11}{figure.2.1}
+\contentsline {figure}{\numberline {2.2}{\ignorespaces Comparaison des performances des GPUs Nvidia et des CPU Intel (d'apr\IeC {\`e}s \cite {CUDAPG}).}}{12}{figure.2.2}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Nombre maximum th\IeC {\'e}orique d'op\IeC {\'e}rations en virgule flottante par seconde en fonction de l'ann\IeC {\'e}e et de l'architecture.}}}{12}{figure.2.2}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Bande passante th\IeC {\'e}orique maximale des diverses architectures.}}}{12}{figure.2.2}
+\contentsline {figure}{\numberline {2.3}{\ignorespaces Organisation des GPU d'architecture Fermi, comme le C2070 (d'apr\IeC {\`e}s www.hpcresearch.nl).}}{13}{figure.2.3}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Organisation en groupes de SMs }}}{13}{figure.2.3}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Constitution d'un SM.}}}{13}{figure.2.3}
+\contentsline {figure}{\numberline {2.4}{\ignorespaces Repr\IeC {\'e}sentation d'une grille de calcul en 2D et des blocs de threads, \IeC {\`a} 2 dimensions, qui la composent.}}{14}{figure.2.4}
 \addvspace {10\p@ }
-\contentsline {figure}{\numberline {3.1}{\ignorespaces \IeC {\`A} gauche : d\IeC {\'e}termination des vecteurs $f_{in}$ et $f_{out}$. \IeC {\`A} droite : code de Freeman d'un vecteur en fonction de sa direction, l'origine \IeC {\'e}tant suppos\IeC {\'e}e au pixel central, en noir. }}{43}{figure.3.1}
-\contentsline {figure}{\numberline {3.2}{\ignorespaces \IeC {\'E}volution du contour lors de la segmentation d'une image de 512$^2$ pixels. La convergence est obtenue \IeC {\`a} l'it\IeC {\'e}ration 14 apr\IeC {\`e}s 44~ms pour un total de 256 n\oe uds.}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation : 4 n\oe uds}}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {It\IeC {\'e}ration 1 : 8 n\oe uds 3~ms}}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {It\IeC {\'e}ration 2 : 16 n\oe uds 1~ms}}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {It\IeC {\'e}ration 3, 32 n\oe uds 1~ms}}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {It\IeC {\'e}ration 7 : 223 n\oe uds 3~ms}}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {It\IeC {\'e}ration 10 : 244 n\oe uds 3~ms}}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(g)}{\ignorespaces {It\IeC {\'e}ration 13 : 256 n\oe uds 3~ms}}}{46}{figure.3.2}
-\contentsline {subfigure}{\numberline {(h)}{\ignorespaces {It\IeC {\'e}ration 14 : 256 n\oe uds 3~ms}}}{46}{figure.3.2}
-\contentsline {figure}{\numberline {3.3}{\ignorespaces Influence du contour initial sur la segmentation. Le contour final 1 est celui de la figure \ref {fig-snakecpu-cochon512}.}}{46}{figure.3.3}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation 2 }}}{46}{figure.3.3}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final 2 : 273 n\oe uds 87~ms}}}{46}{figure.3.3}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Contour final 1 : 256 n\oe uds 44~ms}}}{46}{figure.3.3}
-\contentsline {figure}{\numberline {3.4}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels.}}{47}{figure.3.4}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$d_{max}=16$ et $l_{min}=8$, 1246 n\oe uds en 1.3~s}}}{47}{figure.3.4}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$d_{max}=128$ et $l_{min}=32$, 447 n\oe uds en 0.7~s}}}{47}{figure.3.4}
-\contentsline {figure}{\numberline {3.5}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels avec une cible de petite taille. Le contour initial est celui utilis\IeC {\'e} \IeC {\`a} la figure \ref {fig-snakecpu-cochon4k}.}}{47}{figure.3.5}
-\contentsline {figure}{\numberline {3.6}{\ignorespaces \IeC {\'E}volution du co\IeC {\^u}t relatif des trois fonctions les plus consommatrices en temps de calcul en fonction de la taille de l'image \IeC {\`a} traiter.}}{48}{figure.3.6}
-\contentsline {figure}{\numberline {3.7}{\ignorespaces Calcul des images cumul\IeC {\'e}es $S_x$ et $S_x^2$ en trois \IeC {\'e}tapes successives. a) cumul partiel bloc par bloc et m\IeC {\'e}morisation de la somme de chaque bloc. b) cumul sur le vecteur des sommes partielles. c) ajout des sommes partielles \IeC {\`a} chaque \IeC {\'e}l\IeC {\'e}ment des blocs cumul\IeC {\'e}s.}}{50}{figure.3.7}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {compute\_block\_prefixes()}. La valeur $bs$ correspond au nombre de pixels de chaque bloc, qui est aussi le nombre de threads ex\IeC {\'e}cut\IeC {\'e} par chaque bloc de la grille de calcul.}}}{50}{figure.3.7}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {scan\_blocksums()}.}}}{50}{figure.3.7}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {add\_sums2prefixes()}.}}}{50}{figure.3.7}
-\contentsline {figure}{\numberline {3.8}{\ignorespaces Structuration des donn\IeC {\'e}es en m\IeC {\'e}moire du GPU pour l'\IeC {\'e}valuation en parall\IeC {\`e}le de l'ensemble des \IeC {\'e}volutions possibles du contour.}}{51}{figure.3.8}
-\contentsline {figure}{\numberline {3.9}{\ignorespaces Comparaison des cycles de d\IeC {\'e}placement des n\oe uds. Ligne du haut : version s\IeC {\'e}quentielle. Ligne du bas : version parall\IeC {\`e}le. Les segments en rouge sont des segments du contour non \IeC {\'e}valu\IeC {\'e}s, alors que ceux en pointill\IeC {\'e}s sont les paires ayant re\IeC {\c c}u les meilleures \IeC {\'e}valuations parmi les 8 d\IeC {\'e}placements possibles des n\oe uds correspondant.}}{52}{figure.3.9}
-\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour de r\IeC {\'e}f\IeC {\'e}rence.}}}{52}{figure.3.9}
-\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_1$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9}
-\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_2$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9}
-\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le de tous les n\oe uds. Les segments du contour n'ont pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}s. On ne peut pas dire, a priori si le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9}
-\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds impairs. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{52}{figure.3.9}
-\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds pairs. Un seul segment n'a pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}.}}}{52}{figure.3.9}
+\contentsline {figure}{\numberline {3.1}{\ignorespaces Images 256$\times $256 en niveau de gris 8 bits utilis\IeC {\'e}es pour l'illustration des propri\IeC {\'e}t\IeC {\'e}s des filtres. a) l'image de r\IeC {\'e}f\IeC {\'e}rence non bruit\IeC {\'e}e. b) l'image corrompue par un bruit gaussien d'\IeC {\'e}cart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel \IeC {\`a} 25\%.}}{20}{figure.3.1}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sans bruit}}}{20}{figure.3.1}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Bruit gaussien $\sigma =25$, PSNR=22.3~dB MSSIM=0.16}}}{20}{figure.3.1}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Bruit impulsionnel 25\%, PSNR=9.48~dB MSSIM=0.04}}}{20}{figure.3.1}
+\contentsline {figure}{\numberline {3.2}{\ignorespaces Filtrage par convolution.}}{21}{figure.3.2}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Moyenneur 3$\times $3, PSNR=27.6dB MSSIM=0.34}}}{21}{figure.3.2}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Moyenneur 5$\times $5, PSNR=27.7dB MSSIM=0.38}}}{21}{figure.3.2}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Filtre gaussien 3$\times $3, PSNR=27.4dB MSSIM=0.33}}}{21}{figure.3.2}
+\contentsline {figure}{\numberline {3.3}{\ignorespaces R\IeC {\'e}duction du bruit impulsionnel par filtre m\IeC {\'e}dian.}}{22}{figure.3.3}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 une passe, PSNR=26.4~dB MSSIM=0.90}}}{22}{figure.3.3}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 deux passes, PSNR=34.4~dB MSSIM=0.98}}}{22}{figure.3.3}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {M\IeC {\'e}dian 5$\times $5 une passe, PSNR=35.1~dB MSSIM=0.98}}}{22}{figure.3.3}
+\contentsline {figure}{\numberline {3.4}{\ignorespaces R\IeC {\'e}duction de bruit gaussien par filtrage bilat\IeC {\'e}ral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les \IeC {\'e}carts type des fonctions gaussiennes de pond\IeC {\'e}ration spatiale et d'intensit\IeC {\'e}.}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.1$, PSNR=25.6~dB MSSIM=0.25}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.5$, PSNR=28.0~dB MSSIM=0.36}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=1.0$, PSNR=27.9~dB MSSIM=0.36}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.1$, PSNR=26.7~dB MSSIM=0.29}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.5$, PSNR=27.9~dB MSSIM=0.39}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=1.0$, PSNR=27.5~dB MSSIM=0.38}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(g)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.1$, PSNR=26.8~dB MSSIM=0.29}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(h)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.5$, PSNR=26.8~dB MSSIM=0.37}}}{23}{figure.3.4}
+\contentsline {subfigure}{\numberline {(i)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=1.0$, PSNR=25.9~dB MSSIM=0.36}}}{23}{figure.3.4}
+\contentsline {figure}{\numberline {3.5}{\ignorespaces Filtrage par d\IeC {\'e}composition en ondelettes et seuillage dur des coefficients inf\IeC {\'e}rieurs au seuil $T$.}}{24}{figure.3.5}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$T=20$, PSNR=26.9~dB MSSIM=0.30}}}{24}{figure.3.5}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$T=35$, PSNR=27.6~dB MSSIM=0.36}}}{24}{figure.3.5}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$T=70$, PSNR=26.7~dB MSSIM=0.37}}}{24}{figure.3.5}
+\contentsline {figure}{\numberline {3.6}{\ignorespaces Filtrage par NL-means pour diff\IeC {\'e}rentes combinaisons des param\IeC {\`e}tres de similarit\IeC {\'e} $f$ et de non localit\IeC {\'e} $t$.}}{25}{figure.3.6}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$f=2$ et $t=2$, PSNR=28.5~dB MSSIM=0.37}}}{25}{figure.3.6}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$f=2$ et $t=5$, PSNR=28.6~dB MSSIM=0.38}}}{25}{figure.3.6}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$f=5$ et $t=2$, PSNR=29.0~dB MSSIM=0.39}}}{25}{figure.3.6}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$f=5$ et $t=5$, PSNR=29.0~dB MSSIM=0.40}}}{25}{figure.3.6}
+\contentsline {figure}{\numberline {3.7}{\ignorespaces Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41}}{25}{figure.3.7}
+\contentsline {figure}{\numberline {3.8}{\ignorespaces Performances relatives des filtres m\IeC {\'e}dians impl\IeC {\'e}ment\IeC {\'e}s sur GPU dans libJacket/ArrayFire, PCMF et BVM et ex\IeC {\'e}cut\IeC {\'e}s sur deux mod\IeC {\`e}le de g\IeC {\'e}n\IeC {\'e}rations diff\IeC {\'e}rentes.}}{27}{figure.3.8}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sur GPU GTX260. Courbe tir\IeC {\'e}e de \cite {5402362}}}}{27}{figure.3.8}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Sur GPU C2075. Courbe tir\IeC {\'e}e de \cite {sanchez2013highly}}}}{27}{figure.3.8}
+\contentsline {figure}{\numberline {3.9}{\ignorespaces Illustration pr\IeC {\'e}-chargement en m\IeC {\'e}moire partag\IeC {\'e}e mise en \oe uvre dans \cite {zheng2011performance} pour l'impl\IeC {\'e}mentation, entre autres, du filtre bilat\IeC {\'e}ral. a) en vert le bloc de threads associ\IeC {\'e} aux pixels centraux. b-e) les blocs de pixels successivement pr\IeC {\'e}-charg\IeC {\'e}s en m\IeC {\'e}moire partag\IeC {\'e}e. f) la configuration finale de la ROI en m\IeC {\'e}moire partag\IeC {\'e}e.}}{28}{figure.3.9}
+\contentsline {figure}{\numberline {3.10}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{31}{figure.3.10}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{31}{figure.3.10}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{31}{figure.3.10}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{31}{figure.3.10}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{31}{figure.3.10}
+\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{31}{figure.3.10}
+\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{31}{figure.3.10}
+\contentsline {figure}{\numberline {3.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{33}{figure.3.11}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{33}{figure.3.11}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{33}{figure.3.11}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{33}{figure.3.11}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{33}{figure.3.11}
+\contentsline {figure}{\numberline {3.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{34}{figure.3.12}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{34}{figure.3.12}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{34}{figure.3.12}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{34}{figure.3.12}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{34}{figure.3.12}
+\contentsline {figure}{\numberline {3.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{35}{figure.3.13}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{35}{figure.3.13}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{35}{figure.3.13}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{35}{figure.3.13}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{35}{figure.3.13}
+\contentsline {figure}{\numberline {3.14}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticit\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{36}{figure.3.14}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{36}{figure.3.14}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{36}{figure.3.14}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{36}{figure.3.14}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{36}{figure.3.14}
+\contentsline {figure}{\numberline {3.15}{\ignorespaces \IeC {\'E}volution du nombre de pixels actifs pour les it\IeC {\'e}ration successives de l'impl\IeC {\'e}mentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs apr\IeC {\`e}s chaque it\IeC {\'e}ration, en blanc.}}{39}{figure.3.15}
+\contentsline {figure}{\numberline {3.16}{\ignorespaces Segmentation d'une image couleur de 512$\times $512 pixels par l'impl\IeC {\'e}mentation GPU quick-shift de \cite {fulkerson2012really}.}}{41}{figure.3.16}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{41}{figure.3.16}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\tau =10$ et $\sigma =2$}}}{41}{figure.3.16}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\tau =10$ et $\sigma =10$}}}{41}{figure.3.16}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\tau =20$ et $\sigma =10$}}}{41}{figure.3.16}
+\contentsline {figure}{\numberline {3.17}{\ignorespaces Segmentation d'une image couleur de 2256$\times $3008 pixels.}}{41}{figure.3.17}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{41}{figure.3.17}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift standard}}}{41}{figure.3.17}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift kd-tree}}}{41}{figure.3.17}
+\contentsline {figure}{\numberline {3.18}{\ignorespaces Segmentation d'images issues d'examens IRM par la m\IeC {\'e}thode des level set \IeC {\`a} bande \IeC {\'e}troite.}}{43}{figure.3.18}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Cerveau 256$\times $256$\times $256 en 7~s}}}{43}{figure.3.18}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Reins et aorte, 256$\times $256$\times $272 en 16~s}}}{43}{figure.3.18}
+\contentsline {figure}{\numberline {3.19}{\ignorespaces Segmentation d'une image d'\IeC {\'e}paule en 1024$^2$ pixels issue d'un examen IRM par l'impl\IeC {\'e}mentation du snake GVF de \cite {snakegvf06}. Le contour est repr\IeC {\'e}sent\IeC {\'e} en rougeet le contour final est obtenu en 11~s. }}{43}{figure.3.19}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour initial}}}{43}{figure.3.19}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final}}}{43}{figure.3.19}
+\contentsline {figure}{\numberline {3.20}{\ignorespaces Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}}}{44}{figure.3.20}
+\addvspace {10\p@ }
+\contentsline {figure}{\numberline {4.1}{\ignorespaces \IeC {\`A} gauche : d\IeC {\'e}termination des vecteurs $f_{in}$ et $f_{out}$. \IeC {\`A} droite : code de Freeman d'un vecteur en fonction de sa direction, l'origine \IeC {\'e}tant suppos\IeC {\'e}e au pixel central, en noir. }}{49}{figure.4.1}
+\contentsline {figure}{\numberline {4.2}{\ignorespaces \IeC {\'E}volution du contour lors de la segmentation d'une image de 512$^2$ pixels. La convergence est obtenue \IeC {\`a} l'it\IeC {\'e}ration 14 apr\IeC {\`e}s 44~ms pour un total de 256 n\oe uds.}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation : 4 n\oe uds}}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {It\IeC {\'e}ration 1 : 8 n\oe uds 3~ms}}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {It\IeC {\'e}ration 2 : 16 n\oe uds 1~ms}}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {It\IeC {\'e}ration 3, 32 n\oe uds 1~ms}}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {It\IeC {\'e}ration 7 : 223 n\oe uds 3~ms}}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {It\IeC {\'e}ration 10 : 244 n\oe uds 3~ms}}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(g)}{\ignorespaces {It\IeC {\'e}ration 13 : 256 n\oe uds 3~ms}}}{52}{figure.4.2}
+\contentsline {subfigure}{\numberline {(h)}{\ignorespaces {It\IeC {\'e}ration 14 : 256 n\oe uds 3~ms}}}{52}{figure.4.2}
+\contentsline {figure}{\numberline {4.3}{\ignorespaces Influence du contour initial sur la segmentation. Le contour final 1 est celui de la figure \ref {fig-snakecpu-cochon512}.}}{52}{figure.4.3}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation 2 }}}{52}{figure.4.3}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final 2 : 273 n\oe uds 87~ms}}}{52}{figure.4.3}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Contour final 1 : 256 n\oe uds 44~ms}}}{52}{figure.4.3}
+\contentsline {figure}{\numberline {4.4}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels.}}{53}{figure.4.4}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$d_{max}=16$ et $l_{min}=8$, 1246 n\oe uds en 1.3~s}}}{53}{figure.4.4}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$d_{max}=128$ et $l_{min}=32$, 447 n\oe uds en 0.7~s}}}{53}{figure.4.4}
+\contentsline {figure}{\numberline {4.5}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels avec une cible de petite taille. Le contour initial est celui utilis\IeC {\'e} \IeC {\`a} la figure \ref {fig-snakecpu-cochon4k}.}}{53}{figure.4.5}
+\contentsline {figure}{\numberline {4.6}{\ignorespaces \IeC {\'E}volution du co\IeC {\^u}t relatif des trois fonctions les plus consommatrices en temps de calcul en fonction de la taille de l'image \IeC {\`a} traiter.}}{54}{figure.4.6}
+\contentsline {figure}{\numberline {4.7}{\ignorespaces Calcul des images cumul\IeC {\'e}es $S_x$ et $S_x^2$ en trois \IeC {\'e}tapes successives. a) cumul partiel bloc par bloc et m\IeC {\'e}morisation de la somme de chaque bloc. b) cumul sur le vecteur des sommes partielles. c) ajout des sommes partielles \IeC {\`a} chaque \IeC {\'e}l\IeC {\'e}ment des blocs cumul\IeC {\'e}s.}}{56}{figure.4.7}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {compute\_block\_prefixes()}. La valeur $bs$ correspond au nombre de pixels de chaque bloc, qui est aussi le nombre de threads ex\IeC {\'e}cut\IeC {\'e} par chaque bloc de la grille de calcul.}}}{56}{figure.4.7}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {scan\_blocksums()}.}}}{56}{figure.4.7}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {add\_sums2prefixes()}.}}}{56}{figure.4.7}
+\contentsline {figure}{\numberline {4.8}{\ignorespaces Structuration des donn\IeC {\'e}es en m\IeC {\'e}moire du GPU pour l'\IeC {\'e}valuation en parall\IeC {\`e}le de l'ensemble des \IeC {\'e}volutions possibles du contour.}}{57}{figure.4.8}
+\contentsline {figure}{\numberline {4.9}{\ignorespaces Comparaison des cycles de d\IeC {\'e}placement des n\oe uds. Ligne du haut : version s\IeC {\'e}quentielle. Ligne du bas : version parall\IeC {\`e}le. Les segments en rouge sont des segments du contour non \IeC {\'e}valu\IeC {\'e}s, alors que ceux en pointill\IeC {\'e}s sont les paires ayant re\IeC {\c c}u les meilleures \IeC {\'e}valuations parmi les 8 d\IeC {\'e}placements possibles des n\oe uds correspondant.}}{58}{figure.4.9}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour de r\IeC {\'e}f\IeC {\'e}rence.}}}{58}{figure.4.9}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_1$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{58}{figure.4.9}
+\contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_2$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{58}{figure.4.9}
+\contentsline {subfigure}{\numberline {(d)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le de tous les n\oe uds. Les segments du contour n'ont pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}s. On ne peut pas dire, a priori si le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{58}{figure.4.9}
+\contentsline {subfigure}{\numberline {(e)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds impairs. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{58}{figure.4.9}
+\contentsline {subfigure}{\numberline {(f)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds pairs. Un seul segment n'a pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}.}}}{58}{figure.4.9}
+\contentsline {figure}{\numberline {4.10}{\ignorespaces D\IeC {\'e}termination des coefficients $C(i,j)$ des pixels du contour.}}{60}{figure.4.10}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Quadrants 1 et 4}}}{60}{figure.4.10}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Quadrants 2 et 3}}}{60}{figure.4.10}
+\contentsline {figure}{\numberline {4.11}{\ignorespaces Segmentations de grandes images, avec le contour intial transpos\IeC {\'e} de celui de la figure \ref {fig-snakecpu-cochon512}. a) image de 100~MP. b) image de 150~MP.}}{61}{figure.4.11}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {5 it\IeC {\'e}rations en 0,59~s}}}{61}{figure.4.11}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {3 it\IeC {\'e}rations en 0,35~s}}}{61}{figure.4.11}
+\contentsline {figure}{\numberline {4.12}{\ignorespaces D\IeC {\'e}termination intelligente du contour initial en deux phases successives. a) La premi\IeC {\`e}re \IeC {\'e}tape repose sur un \IeC {\'e}chantillonnage horizontal. b) La seconde \IeC {\'e}tape repose sur un \IeC {\'e}chantillonnage vertical. }}{62}{figure.4.12}
+\contentsline {subfigure}{\numberline {(a)}{\ignorespaces {D\IeC {\'e}termination de $j_L$ et $j_H$.}}}{62}{figure.4.12}
+\contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}termination de $i_L$ et $i_H$.}}}{62}{figure.4.12}
 \addvspace {10\p@ }
 \addvspace {10\p@ }