La valeur observée peut, selon les cas, être de dimension $1$ pour les images représentées en niveaux de gris ou de dimension 3 pour les images couleur représentées au format RVB. Les dimensions supérieures, pour la représentation des images hyperspectrales ne sont pas abordées dans ce manuscrit.
L'image observée peut ainsi être considérée comme un vecteur à $N$ éléments $\bar{v}= (v_k)_{k\in [\![1;N]\!]}$.
Les divers traitements appliqués aux images observées ont souvent pour but d'accéder aux informations contenues dans une image sous-jacente, débarrassée de toute perturbation, dont nous faisons l'hypothèse qu'elle partage le même support $\Omega$ et que nous notons $\bar{u}$. L'estimation de $\bar{u}$ réalisée par ces traitements est notée $\widehat{\bar{u}} = (\widehat{u}_k)_{k\in [\![1;N]\!]}$.
La valeur observée peut, selon les cas, être de dimension $1$ pour les images représentées en niveaux de gris ou de dimension 3 pour les images couleur représentées au format RVB. Les dimensions supérieures, pour la représentation des images hyperspectrales ne sont pas abordées dans ce manuscrit.
L'image observée peut ainsi être considérée comme un vecteur à $N$ éléments $\bar{v}= (v_k)_{k\in [\![1;N]\!]}$.
Les divers traitements appliqués aux images observées ont souvent pour but d'accéder aux informations contenues dans une image sous-jacente, débarrassée de toute perturbation, dont nous faisons l'hypothèse qu'elle partage le même support $\Omega$ et que nous notons $\bar{u}$. L'estimation de $\bar{u}$ réalisée par ces traitements est notée $\widehat{\bar{u}} = (\widehat{u}_k)_{k\in [\![1;N]\!]}$.