X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/these_gilles.git/blobdiff_plain/2145c00e2163c4976cfc5dd2937ac2b5e7515892..d77325cc1ec33fa6968b1ae96b0c66df6120a06a:/THESE/these.aux?ds=inline diff --git a/THESE/these.aux b/THESE/these.aux index 9e64a83..fc1f3af 100644 --- a/THESE/these.aux +++ b/THESE/these.aux @@ -128,6 +128,7 @@ \citation{4310076} \@writefile{toc}{\contentsline {section}{\numberline {2.5}Les techniques de segmentation}{23}{section.2.5}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5.1}Analyse d'histogramme}{23}{subsection.2.5.1}} +\newlabel{sec-histo}{{2.5.1}{23}{Analyse d'histogramme\relax }{subsection.2.5.1}{}} \newlabel{fig-histo-cochon-a}{{2.9(a)}{24}{Subfigure 2 2.9(a)\relax }{subfigure.2.9.1}{}} \newlabel{sub@fig-histo-cochon-a}{{(a)}{24}{Subfigure 2 2.9(a)\relax }{subfigure.2.9.1}{}} \newlabel{fig-histo-cochon-b}{{2.9(b)}{24}{Subfigure 2 2.9(b)\relax }{subfigure.2.9.2}{}} @@ -148,24 +149,29 @@ \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{24}{figure.2.9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{24}{figure.2.9}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{24}{figure.2.9}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.2}Analyse de graphe}{24}{subsection.2.5.2}} \citation{Zahn:1971:GMD:1309266.1309359} \@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces Calcul du seuil de s\IeC {\'e}paration des segments de l'histogramme.}}{25}{algocfline.1}} \newlabel{algo-histo-cochon}{{1}{25}{Analyse d'histogramme\relax }{algocfline.1}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.2}Partitionnement de graphe}{25}{subsection.2.5.2}} \citation{wu1993optimal} \citation{wang2001image} \citation{wang2003image} \citation{felzenszwalb2004efficient} \citation{shi2000normalized} \citation{shi2000normalized} -\citation{macqueen1967some} +\citation{ford1955simple} +\citation{boykov2004experimental} +\citation{chandran2009computational} +\citation{cherkassky1997implementing} +\citation{hochbaum2013simplifications} \@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{26}{figure.2.10}} \newlabel{fig-graph-cochon}{{2.10}{26}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 à 5}{figure.2.10}{}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{26}{figure.2.10}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{26}{figure.2.10}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{26}{figure.2.10}} \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{26}{figure.2.10}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.3}kernel-means, mean-shift et d\IeC {\'e}riv\IeC {\'e}s}{26}{subsection.2.5.3}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.3}kernel-means, mean-shift et apparent\IeC {\'e}s}{26}{subsection.2.5.3}} +\citation{macqueen1967some} \citation{agarwal2002exact} \citation{arora1998approximation} \citation{pelleg2000x} @@ -189,12 +195,6 @@ \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{28}{figure.2.12}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5.4}Les contours actifs, ou \textit {snakes}}{28}{subsection.2.5.4}} \citation{KassWT88} -\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticti\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{29}{figure.2.13}} -\newlabel{fig-snake-tradi-cochon}{{2.13}{29}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les paramètres d'élastictié, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0.1 et 5. \relax }{figure.2.13}{}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{29}{figure.2.13}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{29}{figure.2.13}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{29}{figure.2.13}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{29}{figure.2.13}} \citation{osher1988fronts} \citation{adalsteinsson1994fast} \citation{sethian1996fast} @@ -204,83 +204,201 @@ \citation{GallandBR03} \citation{GermainR01} \citation{arbelaez2011contour} +\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticti\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{30}{figure.2.13}} +\newlabel{fig-snake-tradi-cochon}{{2.13}{30}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les paramètres d'élastictié, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0.1 et 5. \relax }{figure.2.13}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{30}{figure.2.13}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.13}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.13}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{30}{figure.2.13}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5.5}M\IeC {\'e}thodes hybrides}{30}{subsection.2.5.5}} -\@writefile{toc}{\contentsline {section}{\numberline {2.6}L'\IeC {\'e}tat de l'art des impl\IeC {\'e}mentations GPU}{31}{section.2.6}} -\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{33}{chapter.3}} +\citation{fluck2006gpu} +\citation{lefohn2003interactive} +\@writefile{toc}{\contentsline {section}{\numberline {2.6}Les impl\IeC {\'e}mentations GPU des techniques de segmentation}{31}{section.2.6}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.1}Calcul d'histogramme}{31}{subsection.2.6.1}} +\citation{Vineet:2009:FMS:1572769.1572796} +\citation{dixit2005gpu} +\citation{4563095} +\citation{kohli2007dynamic} +\citation{graphcutscuda} +\citation{graphcutscuda} +\citation{4563095} +\citation{graphcutscuda} +\citation{graphcutscuda} +\citation{che2008performance} +\citation{kddcup99} +\citation{5170921} +\citation{che2008performance} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.2}Partitionnement de graphe}{32}{subsection.2.6.2}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.3}K-means, mean-shift et apparent\IeC {\'e}s}{32}{subsection.2.6.3}} +\citation{kmeansgpuopengl} +\citation{li2009mean} +\citation{vedaldi2008quick} +\citation{fulkerson2012really} +\citation{fulkerson2012really} +\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces \IeC {\'E}volution du nombre de pixels actifs pour les it\IeC {\'e}ration successives de l'impl\IeC {\'e}mentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs apr\IeC {\`e}s chaque it\IeC {\'e}ration, en blanc.}}{33}{figure.2.14}} +\newlabel{fig-graphcutscuda}{{2.14}{33}{Évolution du nombre de pixels actifs pour les itération successives de l'implémentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs après chaque itération, en blanc}{figure.2.14}{}} +\citation{fulkerson2012really} +\citation{fulkerson2012really} +\citation{xiao2010efficient} +\citation{lefohn2003inter} +\citation{lefohn2003interactive} +\citation{rumpf2001level} +\citation{rumpf2001level} +\citation{lefohn2005streaming} +\citation{cates2004gist} +\citation{jeong2009scalable} +\citation{jeong2009scalable} +\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces Segmentation d'une image couleur de 512$\times $512 pixels par l'impl\IeC {\'e}mentation GPU quick-shift de \cite {fulkerson2012really}.}}{34}{figure.2.15}} +\newlabel{fig-quickshift-yo}{{2.15}{34}{Segmentation d'une image couleur de 512$\times $512 pixels par l'implémentation GPU quick-shift de \cite {fulkerson2012really}}{figure.2.15}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image originale}}}{34}{figure.2.15}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\tau =10$ et $\sigma =2$}}}{34}{figure.2.15}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\tau =10$ et $\sigma =10$}}}{34}{figure.2.15}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\tau =20$ et $\sigma =10$}}}{34}{figure.2.15}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.4}Snakes et Level set}{34}{subsection.2.6.4}} +\citation{Roberts:2010:WGA:1921479.1921499} +\citation{lefohn2003inter} +\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces Segmentation d'une image couleur de 2256$\times $3008 pixels.}}{35}{figure.2.16}} +\newlabel{fig-meanshift-castle}{{2.16}{35}{Segmentation d'une image couleur de 2256$\times $3008 pixels}{figure.2.16}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image originale}}}{35}{figure.2.16}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift standard}}}{35}{figure.2.16}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift kd-tree}}}{35}{figure.2.16}} +\citation{snakegvf06} +\citation{bauer2009segmentation} +\citation{li2011robust} +\citation{snakegvfopencl12} +\citation{snakegvf06} +\citation{zheng2012fast} +\newlabel{fig-l7-brain}{{2.17(a)}{36}{Subfigure 2 2.17(a)\relax }{subfigure.2.17.1}{}} +\newlabel{sub@fig-l7-brain}{{(a)}{36}{Subfigure 2 2.17(a)\relax }{subfigure.2.17.1}{}} +\newlabel{fig-l7-reins}{{2.17(b)}{36}{Subfigure 2 2.17(b)\relax }{subfigure.2.17.2}{}} +\newlabel{sub@fig-l7-reins}{{(b)}{36}{Subfigure 2 2.17(b)\relax }{subfigure.2.17.2}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.17}{\ignorespaces Segmentation d'images issues d'examens IRM par la m\IeC {\'e}thode des level set \IeC {\`a} bande \IeC {\'e}troite.}}{36}{figure.2.17}} +\newlabel{fig-l7-narrow}{{2.17}{36}{Segmentation d'images issues d'examens IRM par la méthode des level set à bande étroite}{figure.2.17}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Cerveau 256$\times $256$\times $256 en 7~s}}}{36}{figure.2.17}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Reins et aorte, 256$\times $256$\times $272 en 16~s}}}{36}{figure.2.17}} +\citation{li2011robust} +\citation{snakegvfopencl12} +\citation{arbelaez2011contour} +\citation{5459410} +\citation{martin2001database} +\citation{bresenham1965algorithm} +\citation{martin2001database} +\citation{martin2001database} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.5}Algorithmes hybrides}{37}{subsection.2.6.5}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.18}{\ignorespaces Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}}}{38}{figure.2.18}} +\newlabel{fig-gPb}{{2.18}{38}{Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}\relax }{figure.2.18}{}} +\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{39}{chapter.3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {3.1}Pr\IeC {\'e}sentation - existant}{33}{section.3.1}} -\@writefile{toc}{\contentsline {section}{\numberline {3.2}La parall\IeC {\`e}lisation du snake polygonal}{33}{section.3.2}} -\@writefile{toc}{\contentsline {chapter}{\numberline {4}Le filtrage des images sur GPU}{35}{chapter.4}} +\@writefile{toc}{\contentsline {section}{\numberline {3.1}Pr\IeC {\'e}sentation - existant}{39}{section.3.1}} +\@writefile{toc}{\contentsline {section}{\numberline {3.2}La parall\IeC {\`e}lisation du snake polygonal}{39}{section.3.2}} +\@writefile{toc}{\contentsline {chapter}{\numberline {4}Le filtrage des images sur GPU}{41}{chapter.4}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {4.1}Algorithme de r\IeC {\'e}duction de bruit par recherche des lignes de niveaux}{35}{section.4.1}} -\@writefile{toc}{\contentsline {section}{\numberline {4.2}Filtre m\IeC {\'e}dian}{35}{section.4.2}} -\@writefile{toc}{\contentsline {section}{\numberline {4.3}Filtres de convolution}{35}{section.4.3}} +\@writefile{toc}{\contentsline {section}{\numberline {4.1}Algorithme de r\IeC {\'e}duction de bruit par recherche des lignes de niveaux}{41}{section.4.1}} +\@writefile{toc}{\contentsline {section}{\numberline {4.2}Filtre m\IeC {\'e}dian}{41}{section.4.2}} +\@writefile{toc}{\contentsline {section}{\numberline {4.3}Filtres de convolution}{41}{section.4.3}} \bibstyle{plain} \bibdata{biblio} -\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conclusion g\IeC {\'e}n\IeC {\'e}rale}{37}{chapter.5}} +\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conclusion g\IeC {\'e}n\IeC {\'e}rale}{43}{chapter.5}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\bibcite{kodakccd}{1} -\bibcite{adalsteinsson1994fast}{2} -\bibcite{agarwal2002exact}{3} -\bibcite{aldinucci2012parallel}{4} -\bibcite{arbelaez2011contour}{5} -\bibcite{arora1998approximation}{6} -\bibcite{bertaux2004speckle}{7} -\bibcite{1467423}{8} -\bibcite{BuadesCM06}{9} -\bibcite{Caselles99topographicmaps}{10} -\bibcite{chen09}{11} -\bibcite{1093941}{12} -\bibcite{cheng1995mean}{13} -\bibcite{ChesnaudRB99}{14} -\bibcite{cohen1993surface}{15} -\bibcite{comaniciu1999mean}{16} -\bibcite{comaniciu2002mean}{17} -\bibcite{cutrona1990synthetic}{18} -\bibcite{Dabov06imagedenoising}{19} -\bibcite{Dabov09bm3dimage}{20} -\bibcite{Daubechies:1992:TLW:130655}{21} -\bibcite{elad2006image}{22} -\bibcite{felzenszwalb2004efficient}{23} -\bibcite{foley1994introduction}{24} -\bibcite{fukunaga1975estimation}{25} -\bibcite{GallandBR03}{26} -\bibcite{GermainR01}{27} -\bibcite{nlmeansgpubelge}{28} -\bibcite{healey1994radiometric}{29} -\bibcite{humphrey1924psychology}{30} -\bibcite{5402362}{31} -\bibcite{KassWT88}{32} -\bibcite{keselman1998extraction}{33} -\bibcite{cmla2009Kes}{34} -\bibcite{macqueen1967some}{35} -\bibcite{Mallat:2008:WTS:1525499}{36} -\bibcite{mancuso2001introduction}{37} -\bibcite{coil}{38} -\bibcite{osher1988fronts}{39} -\bibcite{4310076}{40} -\bibcite{PALHANOXAVIERDEFONTES}{41} -\bibcite{pelleg2000x}{42} -\bibcite{4287006}{43} -\bibcite{1521458}{44} -\bibcite{4587843}{45} -\bibcite{ronfard1994region}{46} -\bibcite{6288187}{47} -\bibcite{sethian1996fast}{48} -\bibcite{shi2000normalized}{49} -\bibcite{convolutionsoup}{50} -\bibcite{strang1999discrete}{51} -\bibcite{theuwissen2001ccd}{52} -\bibcite{710815}{53} -\bibcite{tukey77}{54} -\bibcite{wang2001image}{55} -\bibcite{wang2003image}{56} -\bibcite{Wang04imagequality}{57} -\bibcite{wu1993optimal}{58} -\bibcite{5206542}{59} -\bibcite{Zahn:1971:GMD:1309266.1309359}{60} -\bibcite{zheng2011performance}{61} +\bibcite{kddcup99}{1} +\bibcite{kodakccd}{2} +\bibcite{adalsteinsson1994fast}{3} +\bibcite{agarwal2002exact}{4} +\bibcite{aldinucci2012parallel}{5} +\bibcite{arbelaez2011contour}{6} +\bibcite{arora1998approximation}{7} +\bibcite{bauer2009segmentation}{8} +\bibcite{bertaux2004speckle}{9} +\bibcite{boykov2004experimental}{10} +\bibcite{bresenham1965algorithm}{11} +\bibcite{1467423}{12} +\bibcite{BuadesCM06}{13} +\bibcite{Caselles99topographicmaps}{14} +\bibcite{5459410}{15} +\bibcite{cates2004gist}{16} +\bibcite{chandran2009computational}{17} +\bibcite{che2008performance}{18} +\bibcite{chen09}{19} +\bibcite{1093941}{20} +\bibcite{cheng1995mean}{21} +\bibcite{cherkassky1997implementing}{22} +\bibcite{ChesnaudRB99}{23} +\bibcite{cohen1993surface}{24} +\bibcite{comaniciu1999mean}{25} +\bibcite{comaniciu2002mean}{26} +\bibcite{cutrona1990synthetic}{27} +\bibcite{Dabov06imagedenoising}{28} +\bibcite{Dabov09bm3dimage}{29} +\bibcite{Daubechies:1992:TLW:130655}{30} +\bibcite{dixit2005gpu}{31} +\bibcite{elad2006image}{32} +\bibcite{felzenszwalb2004efficient}{33} +\bibcite{fluck2006gpu}{34} +\bibcite{foley1994introduction}{35} +\bibcite{ford1955simple}{36} +\bibcite{fukunaga1975estimation}{37} +\bibcite{fulkerson2012really}{38} +\bibcite{GallandBR03}{39} +\bibcite{GermainR01}{40} +\bibcite{nlmeansgpubelge}{41} +\bibcite{snakegvf06}{42} +\bibcite{healey1994radiometric}{43} +\bibcite{hochbaum2013simplifications}{44} +\bibcite{5170921}{45} +\bibcite{humphrey1924psychology}{46} +\bibcite{jeong2009scalable}{47} +\bibcite{5402362}{48} +\bibcite{KassWT88}{49} +\bibcite{keselman1998extraction}{50} +\bibcite{cmla2009Kes}{51} +\bibcite{kohli2007dynamic}{52} +\bibcite{lefohn2003inter}{53} +\bibcite{lefohn2003interactive}{54} +\bibcite{lefohn2005streaming}{55} +\bibcite{li2009mean}{56} +\bibcite{li2011robust}{57} +\bibcite{macqueen1967some}{58} +\bibcite{Mallat:2008:WTS:1525499}{59} +\bibcite{mancuso2001introduction}{60} +\bibcite{martin2001database}{61} +\bibcite{coil}{62} +\bibcite{osher1988fronts}{63} +\bibcite{4310076}{64} +\bibcite{PALHANOXAVIERDEFONTES}{65} +\bibcite{pelleg2000x}{66} +\bibcite{4287006}{67} +\bibcite{1521458}{68} +\bibcite{4587843}{69} +\bibcite{Roberts:2010:WGA:1921479.1921499}{70} +\bibcite{ronfard1994region}{71} +\bibcite{rumpf2001level}{72} +\bibcite{6288187}{73} +\bibcite{sethian1996fast}{74} +\bibcite{kmeansgpuopengl}{75} +\bibcite{shi2000normalized}{76} +\bibcite{snakegvfopencl12}{77} +\bibcite{convolutionsoup}{78} +\bibcite{graphcutscuda}{79} +\bibcite{strang1999discrete}{80} +\bibcite{theuwissen2001ccd}{81} +\bibcite{710815}{82} +\bibcite{tukey77}{83} +\bibcite{vedaldi2008quick}{84} +\bibcite{4563095}{85} +\bibcite{Vineet:2009:FMS:1572769.1572796}{86} +\bibcite{wang2001image}{87} +\bibcite{wang2003image}{88} +\bibcite{Wang04imagequality}{89} +\bibcite{wu1993optimal}{90} +\bibcite{xiao2010efficient}{91} +\bibcite{5206542}{92} +\bibcite{Zahn:1971:GMD:1309266.1309359}{93} +\bibcite{zheng2011performance}{94} +\bibcite{zheng2012fast}{95} \citation{zheng2011performance} +\citation{graphcutscuda} +\citation{fulkerson2012really} +\citation{martin2001database}