X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/these_gilles.git/blobdiff_plain/337bc2017ae0e8ef623077988ea7998f48b3c442..d77325cc1ec33fa6968b1ae96b0c66df6120a06a:/THESE/these.aux?ds=sidebyside diff --git a/THESE/these.aux b/THESE/these.aux index 331819f..fc1f3af 100644 --- a/THESE/these.aux +++ b/THESE/these.aux @@ -22,57 +22,383 @@ \@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{7}{chapter.1}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} +\citation{Caselles99topographicmaps} +\citation{cutrona1990synthetic} \@writefile{toc}{\contentsline {chapter}{\numberline {2}Le traitement des images bruit\IeC {\'e}es}{11}{chapter.2}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {2.1}Mod\IeC {\`e}le d'image bruit\IeC {\'e}e}{12}{section.2.1}} +\@writefile{toc}{\contentsline {section}{\numberline {2.1}Mod\IeC {\`e}le d'image bruit\IeC {\'e}e}{11}{section.2.1}} +\citation{mancuso2001introduction} +\citation{theuwissen2001ccd} +\citation{healey1994radiometric} +\citation{kodakccd} \@writefile{toc}{\contentsline {section}{\numberline {2.2}Mod\IeC {\`e}les de bruit}{12}{section.2.2}} +\newlabel{sec_bruits}{{2.2}{12}{Modèles de bruit\relax }{section.2.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Le bruit gaussien}{12}{subsection.2.2.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Le speckle}{12}{subsection.2.2.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Le bruit ``sel et poivre''}{13}{subsection.2.2.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Le bruit de Poisson}{13}{subsection.2.2.4}} \@writefile{toc}{\contentsline {section}{\numberline {2.3}Les techniques de r\IeC {\'e}duction de bruit}{13}{section.2.3}} -\@writefile{toc}{\contentsline {section}{\numberline {2.4}Les techniques de segmentation}{14}{section.2.4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Analyse d'histogramme}{14}{subsection.2.4.1}} -\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces Calcul du seuil de s\IeC {\'e}paration des segments de l'histogramme.}}{15}{algocfline.1}} -\newlabel{algo-histo-cochon}{{1}{15}{Analyse d'histogramme\relax }{algocfline.1}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Analyse de graphe}{15}{subsection.2.4.2}} -\newlabel{fig-histo-cochon-a}{{2.1(a)}{16}{Subfigure 2 2.1(a)\relax }{subfigure.2.1.1}{}} -\newlabel{sub@fig-histo-cochon-a}{{(a)}{16}{Subfigure 2 2.1(a)\relax }{subfigure.2.1.1}{}} -\newlabel{fig-histo-cochon-b}{{2.1(b)}{16}{Subfigure 2 2.1(b)\relax }{subfigure.2.1.2}{}} -\newlabel{sub@fig-histo-cochon-b}{{(b)}{16}{Subfigure 2 2.1(b)\relax }{subfigure.2.1.2}{}} -\newlabel{fig-histo-cochon-c}{{2.1(c)}{16}{Subfigure 2 2.1(c)\relax }{subfigure.2.1.3}{}} -\newlabel{sub@fig-histo-cochon-c}{{(c)}{16}{Subfigure 2 2.1(c)\relax }{subfigure.2.1.3}{}} -\newlabel{fig-histo-cochon-d}{{2.1(d)}{16}{Subfigure 2 2.1(d)\relax }{subfigure.2.1.4}{}} -\newlabel{sub@fig-histo-cochon-d}{{(d)}{16}{Subfigure 2 2.1(d)\relax }{subfigure.2.1.4}{}} -\newlabel{fig-histo-cochon-e}{{2.1(e)}{16}{Subfigure 2 2.1(e)\relax }{subfigure.2.1.5}{}} -\newlabel{sub@fig-histo-cochon-e}{{(e)}{16}{Subfigure 2 2.1(e)\relax }{subfigure.2.1.5}{}} -\newlabel{fig-histo-cochon-f}{{2.1(f)}{16}{Subfigure 2 2.1(f)\relax }{subfigure.2.1.6}{}} -\newlabel{sub@fig-histo-cochon-f}{{(f)}{16}{Subfigure 2 2.1(f)\relax }{subfigure.2.1.6}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Segmentation par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{16}{figure.2.1}} -\newlabel{fig-histo-cochon}{{2.1}{16}{Segmentation par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation}{figure.2.1}{}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{16}{figure.2.1}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}kernel-means, mean-shift et d\IeC {\'e}riv\IeC {\'e}s}{17}{subsection.2.4.3}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Les contours actifs, ou \textit {snakes}}{18}{subsection.2.4.4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.5}M\IeC {\'e}thodes hybrides}{19}{subsection.2.4.5}} -\@writefile{toc}{\contentsline {section}{\numberline {2.5}L'\IeC {\'e}tat de l'art des impl\IeC {\'e}mentations GPU}{20}{section.2.5}} -\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{21}{chapter.3}} +\citation{coil} +\citation{Wang04imagequality} +\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Images 256$\times $256 en niveau de gris 8 bits utilis\IeC {\'e}es pour l'illustration des propri\IeC {\'e}t\IeC {\'e}s des filtres. a) l'image de r\IeC {\'e}f\IeC {\'e}rence non bruit\IeC {\'e}e. b) l'image corrompue par un bruit gaussien d'\IeC {\'e}cart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel \IeC {\`a} 25\%.}}{14}{figure.2.1}} +\newlabel{fig-ny-noises}{{2.1}{14}{Images 256$\times $256 en niveau de gris 8 bits utilisées pour l'illustration des propriétés des filtres. a) l'image de référence non bruitée. b) l'image corrompue par un bruit gaussien d'écart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel à 25\%}{figure.2.1}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Sans bruit}}}{14}{figure.2.1}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Bruit gaussien $\sigma =25$, PSNR=22.3~dB MSSIM=0.16}}}{14}{figure.2.1}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Bruit impulsionnel 25\%, PSNR=9.48~dB MSSIM=0.04}}}{14}{figure.2.1}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Les op\IeC {\'e}rateurs de base}{14}{subsection.2.3.1}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1.1}Le filtre de convolution}{14}{subsubsection.2.3.1.1}} +\citation{tukey77} +\citation{4287006} +\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Filtrage par convolution.}}{15}{figure.2.2}} +\newlabel{fig-ny-convo}{{2.2}{15}{Filtrage par convolution}{figure.2.2}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Moyenneur 3$\times $3, PSNR=27.6dB MSSIM=0.34}}}{15}{figure.2.2}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Moyenneur 5$\times $5, PSNR=27.7dB MSSIM=0.38}}}{15}{figure.2.2}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Filtre gaussien 3$\times $3, PSNR=27.4dB MSSIM=0.33}}}{15}{figure.2.2}} +\newlabel{convoDef}{{2.1}{15}{Le filtre de convolution\relax }{equation.2.3.1}{}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1.2}Le filtre m\IeC {\'e}dian}{15}{subsubsection.2.3.1.2}} +\citation{710815} +\citation{1521458} +\citation{4587843} +\citation{BuadesCM06} +\citation{bertaux2004speckle} +\citation{Mallat:2008:WTS:1525499} +\citation{Daubechies:1992:TLW:130655} +\citation{1093941} +\citation{strang1999discrete} +\citation{elad2006image} +\citation{elad2006image} +\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces R\IeC {\'e}duction du bruit impulsionnel par filtre m\IeC {\'e}dian.}}{16}{figure.2.3}} +\newlabel{fig-ny-median}{{2.3}{16}{Réduction du bruit impulsionnel par filtre médian}{figure.2.3}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 une passe, PSNR=26.4~dB MSSIM=0.90}}}{16}{figure.2.3}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 deux passes, PSNR=34.4~dB MSSIM=0.98}}}{16}{figure.2.3}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {M\IeC {\'e}dian 5$\times $5 une passe, PSNR=35.1~dB MSSIM=0.98}}}{16}{figure.2.3}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1.3}Le filtre bilat\IeC {\'e}ral}{16}{subsubsection.2.3.1.3}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces R\IeC {\'e}duction de bruit gaussien par filtrage bilat\IeC {\'e}ral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les \IeC {\'e}carts type des fonctions gaussiennes de pond\IeC {\'e}ration spatiale et d'intensit\IeC {\'e}.}}{17}{figure.2.4}} +\newlabel{fig-ny-bilat}{{2.4}{17}{Réduction de bruit gaussien par filtrage bilatéral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les écarts type des fonctions gaussiennes de pondération spatiale et d'intensité}{figure.2.4}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.1$, PSNR=25.6~dB MSSIM=0.25}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.5$, PSNR=28.0~dB MSSIM=0.36}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=1.0$, PSNR=27.9~dB MSSIM=0.36}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.1$, PSNR=26.7~dB MSSIM=0.29}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.5$, PSNR=27.9~dB MSSIM=0.39}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=1.0$, PSNR=27.5~dB MSSIM=0.38}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.1$, PSNR=26.8~dB MSSIM=0.29}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.5$, PSNR=26.8~dB MSSIM=0.37}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=1.0$, PSNR=25.9~dB MSSIM=0.36}}}{17}{figure.2.4}} +\citation{1467423} +\citation{Dabov06imagedenoising} +\citation{Dabov09bm3dimage} +\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces Filtrage par d\IeC {\'e}composition en ondelettes et seuillage dur des coefficients inf\IeC {\'e}rieurs au seuil $T$.}}{18}{figure.2.5}} +\newlabel{fig-ny-dwt}{{2.5}{18}{Filtrage par décomposition en ondelettes et seuillage dur des coefficients inférieurs au seuil $T$}{figure.2.5}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$T=20$, PSNR=26.9~dB MSSIM=0.30}}}{18}{figure.2.5}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$T=35$, PSNR=27.6~dB MSSIM=0.36}}}{18}{figure.2.5}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$T=70$, PSNR=26.7~dB MSSIM=0.37}}}{18}{figure.2.5}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1.4}Les algorithmes de filtrage par dictionnaire}{18}{subsubsection.2.3.1.4}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Les algorithmes de filtrage par patches}{18}{subsection.2.3.2}} +\citation{cmla2009Kes} +\citation{convolutionsoup} +\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces Filtrage par NL-means pour diff\IeC {\'e}rentes combinaisons des param\IeC {\`e}tres de similarit\IeC {\'e} $f$ et de non localit\IeC {\'e} $t$.}}{19}{figure.2.6}} +\newlabel{fig-ny-nlm}{{2.6}{19}{Filtrage par NL-means pour différentes combinaisons des paramètres de similarité $f$ et de non localité $t$}{figure.2.6}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$f=2$ et $t=2$, PSNR=28.5~dB MSSIM=0.37}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$f=2$ et $t=5$, PSNR=28.6~dB MSSIM=0.38}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$f=5$ et $t=2$, PSNR=29.0~dB MSSIM=0.39}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$f=5$ et $t=5$, PSNR=29.0~dB MSSIM=0.40}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41}}{19}{figure.2.7}} +\newlabel{fig-ny-bm3d}{{2.7}{19}{Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41\relax }{figure.2.7}{}} +\@writefile{toc}{\contentsline {section}{\numberline {2.4}Les impl\IeC {\'e}mentations GPU des algorithmes de filtrage}{19}{section.2.4}} +\citation{4287006} +\citation{6288187} +\citation{5402362} +\citation{chen09} +\citation{5402362} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Le filtrage par convolution}{20}{subsection.2.4.1}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Le filtre m\IeC {\'e}dian}{20}{subsection.2.4.2}} +\citation{aldinucci2012parallel} +\citation{5206542} +\citation{zheng2011performance} +\citation{zheng2011performance} +\citation{zheng2011performance} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Le filtre bilat\IeC {\'e}ral}{21}{subsection.2.4.3}} +\citation{PALHANOXAVIERDEFONTES} +\citation{nlmeansgpubelge} +\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Illustration pr\IeC {\'e}-chargement en m\IeC {\'e}moire partag\IeC {\'e}e mise en \oe uvre dans \cite {zheng2011performance} pour l'impl\IeC {\'e}mentation, entre autres, du filtre bilat\IeC {\'e}ral. a) en vert le bloc de threads associ\IeC {\'e} aux pixels centraux. b-e) les blocs de pixels successivement pr\IeC {\'e}-charg\IeC {\'e}s en m\IeC {\'e}moire partag\IeC {\'e}e. f) la configuration finale de la ROI en m\IeC {\'e}moire partag\IeC {\'e}e.}}{22}{figure.2.8}} +\newlabel{fig-prefetch-zheng}{{2.8}{22}{Illustration pré-chargement en mémoire partagée mise en \oe uvre dans \cite {zheng2011performance} pour l'implémentation, entre autres, du filtre bilatéral. a) en vert le bloc de threads associé aux pixels centraux. b-e) les blocs de pixels successivement pré-chargés en mémoire partagée. f) la configuration finale de la ROI en mémoire partagée}{figure.2.8}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Les filtres par patches}{22}{subsection.2.4.4}} +\citation{humphrey1924psychology} +\citation{4310076} +\@writefile{toc}{\contentsline {section}{\numberline {2.5}Les techniques de segmentation}{23}{section.2.5}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.1}Analyse d'histogramme}{23}{subsection.2.5.1}} +\newlabel{sec-histo}{{2.5.1}{23}{Analyse d'histogramme\relax }{subsection.2.5.1}{}} +\newlabel{fig-histo-cochon-a}{{2.9(a)}{24}{Subfigure 2 2.9(a)\relax }{subfigure.2.9.1}{}} +\newlabel{sub@fig-histo-cochon-a}{{(a)}{24}{Subfigure 2 2.9(a)\relax }{subfigure.2.9.1}{}} +\newlabel{fig-histo-cochon-b}{{2.9(b)}{24}{Subfigure 2 2.9(b)\relax }{subfigure.2.9.2}{}} +\newlabel{sub@fig-histo-cochon-b}{{(b)}{24}{Subfigure 2 2.9(b)\relax }{subfigure.2.9.2}{}} +\newlabel{fig-histo-cochon-c}{{2.9(c)}{24}{Subfigure 2 2.9(c)\relax }{subfigure.2.9.3}{}} +\newlabel{sub@fig-histo-cochon-c}{{(c)}{24}{Subfigure 2 2.9(c)\relax }{subfigure.2.9.3}{}} +\newlabel{fig-histo-cochon-d}{{2.9(d)}{24}{Subfigure 2 2.9(d)\relax }{subfigure.2.9.4}{}} +\newlabel{sub@fig-histo-cochon-d}{{(d)}{24}{Subfigure 2 2.9(d)\relax }{subfigure.2.9.4}{}} +\newlabel{fig-histo-cochon-e}{{2.9(e)}{24}{Subfigure 2 2.9(e)\relax }{subfigure.2.9.5}{}} +\newlabel{sub@fig-histo-cochon-e}{{(e)}{24}{Subfigure 2 2.9(e)\relax }{subfigure.2.9.5}{}} +\newlabel{fig-histo-cochon-f}{{2.9(f)}{24}{Subfigure 2 2.9(f)\relax }{subfigure.2.9.6}{}} +\newlabel{sub@fig-histo-cochon-f}{{(f)}{24}{Subfigure 2 2.9(f)\relax }{subfigure.2.9.6}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{24}{figure.2.9}} +\newlabel{fig-histo-cochon}{{2.9}{24}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation}{figure.2.9}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{24}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{24}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{24}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{24}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{24}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{24}{figure.2.9}} +\citation{Zahn:1971:GMD:1309266.1309359} +\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces Calcul du seuil de s\IeC {\'e}paration des segments de l'histogramme.}}{25}{algocfline.1}} +\newlabel{algo-histo-cochon}{{1}{25}{Analyse d'histogramme\relax }{algocfline.1}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.2}Partitionnement de graphe}{25}{subsection.2.5.2}} +\citation{wu1993optimal} +\citation{wang2001image} +\citation{wang2003image} +\citation{felzenszwalb2004efficient} +\citation{shi2000normalized} +\citation{shi2000normalized} +\citation{ford1955simple} +\citation{boykov2004experimental} +\citation{chandran2009computational} +\citation{cherkassky1997implementing} +\citation{hochbaum2013simplifications} +\@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{26}{figure.2.10}} +\newlabel{fig-graph-cochon}{{2.10}{26}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 à 5}{figure.2.10}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{26}{figure.2.10}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{26}{figure.2.10}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{26}{figure.2.10}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{26}{figure.2.10}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.3}kernel-means, mean-shift et apparent\IeC {\'e}s}{26}{subsection.2.5.3}} +\citation{macqueen1967some} +\citation{agarwal2002exact} +\citation{arora1998approximation} +\citation{pelleg2000x} +\citation{fukunaga1975estimation} +\citation{cheng1995mean} +\citation{foley1994introduction} +\citation{comaniciu1999mean} +\citation{comaniciu2002mean} +\citation{keselman1998extraction} +\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{27}{figure.2.11}} +\newlabel{fig-kmeans-cochon}{{2.11}{27}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 à 5. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.11}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{27}{figure.2.11}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{27}{figure.2.11}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{27}{figure.2.11}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{27}{figure.2.11}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{28}{figure.2.12}} +\newlabel{fig-meanshift-cochon}{{2.12}{28}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 à 5. Le volume minimal admis pour un segment est fixé à 100 pixels. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.12}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{28}{figure.2.12}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{28}{figure.2.12}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{28}{figure.2.12}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{28}{figure.2.12}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.4}Les contours actifs, ou \textit {snakes}}{28}{subsection.2.5.4}} +\citation{KassWT88} +\citation{osher1988fronts} +\citation{adalsteinsson1994fast} +\citation{sethian1996fast} +\citation{cohen1993surface} +\citation{ronfard1994region} +\citation{ChesnaudRB99} +\citation{GallandBR03} +\citation{GermainR01} +\citation{arbelaez2011contour} +\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticti\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{30}{figure.2.13}} +\newlabel{fig-snake-tradi-cochon}{{2.13}{30}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les paramètres d'élastictié, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0.1 et 5. \relax }{figure.2.13}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{30}{figure.2.13}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.13}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{30}{figure.2.13}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{30}{figure.2.13}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.5}M\IeC {\'e}thodes hybrides}{30}{subsection.2.5.5}} +\citation{fluck2006gpu} +\citation{lefohn2003interactive} +\@writefile{toc}{\contentsline {section}{\numberline {2.6}Les impl\IeC {\'e}mentations GPU des techniques de segmentation}{31}{section.2.6}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.1}Calcul d'histogramme}{31}{subsection.2.6.1}} +\citation{Vineet:2009:FMS:1572769.1572796} +\citation{dixit2005gpu} +\citation{4563095} +\citation{kohli2007dynamic} +\citation{graphcutscuda} +\citation{graphcutscuda} +\citation{4563095} +\citation{graphcutscuda} +\citation{graphcutscuda} +\citation{che2008performance} +\citation{kddcup99} +\citation{5170921} +\citation{che2008performance} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.2}Partitionnement de graphe}{32}{subsection.2.6.2}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.3}K-means, mean-shift et apparent\IeC {\'e}s}{32}{subsection.2.6.3}} +\citation{kmeansgpuopengl} +\citation{li2009mean} +\citation{vedaldi2008quick} +\citation{fulkerson2012really} +\citation{fulkerson2012really} +\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces \IeC {\'E}volution du nombre de pixels actifs pour les it\IeC {\'e}ration successives de l'impl\IeC {\'e}mentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs apr\IeC {\`e}s chaque it\IeC {\'e}ration, en blanc.}}{33}{figure.2.14}} +\newlabel{fig-graphcutscuda}{{2.14}{33}{Évolution du nombre de pixels actifs pour les itération successives de l'implémentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs après chaque itération, en blanc}{figure.2.14}{}} +\citation{fulkerson2012really} +\citation{fulkerson2012really} +\citation{xiao2010efficient} +\citation{lefohn2003inter} +\citation{lefohn2003interactive} +\citation{rumpf2001level} +\citation{rumpf2001level} +\citation{lefohn2005streaming} +\citation{cates2004gist} +\citation{jeong2009scalable} +\citation{jeong2009scalable} +\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces Segmentation d'une image couleur de 512$\times $512 pixels par l'impl\IeC {\'e}mentation GPU quick-shift de \cite {fulkerson2012really}.}}{34}{figure.2.15}} +\newlabel{fig-quickshift-yo}{{2.15}{34}{Segmentation d'une image couleur de 512$\times $512 pixels par l'implémentation GPU quick-shift de \cite {fulkerson2012really}}{figure.2.15}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image originale}}}{34}{figure.2.15}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\tau =10$ et $\sigma =2$}}}{34}{figure.2.15}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\tau =10$ et $\sigma =10$}}}{34}{figure.2.15}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\tau =20$ et $\sigma =10$}}}{34}{figure.2.15}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.4}Snakes et Level set}{34}{subsection.2.6.4}} +\citation{Roberts:2010:WGA:1921479.1921499} +\citation{lefohn2003inter} +\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces Segmentation d'une image couleur de 2256$\times $3008 pixels.}}{35}{figure.2.16}} +\newlabel{fig-meanshift-castle}{{2.16}{35}{Segmentation d'une image couleur de 2256$\times $3008 pixels}{figure.2.16}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image originale}}}{35}{figure.2.16}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift standard}}}{35}{figure.2.16}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift kd-tree}}}{35}{figure.2.16}} +\citation{snakegvf06} +\citation{bauer2009segmentation} +\citation{li2011robust} +\citation{snakegvfopencl12} +\citation{snakegvf06} +\citation{zheng2012fast} +\newlabel{fig-l7-brain}{{2.17(a)}{36}{Subfigure 2 2.17(a)\relax }{subfigure.2.17.1}{}} +\newlabel{sub@fig-l7-brain}{{(a)}{36}{Subfigure 2 2.17(a)\relax }{subfigure.2.17.1}{}} +\newlabel{fig-l7-reins}{{2.17(b)}{36}{Subfigure 2 2.17(b)\relax }{subfigure.2.17.2}{}} +\newlabel{sub@fig-l7-reins}{{(b)}{36}{Subfigure 2 2.17(b)\relax }{subfigure.2.17.2}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.17}{\ignorespaces Segmentation d'images issues d'examens IRM par la m\IeC {\'e}thode des level set \IeC {\`a} bande \IeC {\'e}troite.}}{36}{figure.2.17}} +\newlabel{fig-l7-narrow}{{2.17}{36}{Segmentation d'images issues d'examens IRM par la méthode des level set à bande étroite}{figure.2.17}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Cerveau 256$\times $256$\times $256 en 7~s}}}{36}{figure.2.17}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Reins et aorte, 256$\times $256$\times $272 en 16~s}}}{36}{figure.2.17}} +\citation{li2011robust} +\citation{snakegvfopencl12} +\citation{arbelaez2011contour} +\citation{5459410} +\citation{martin2001database} +\citation{bresenham1965algorithm} +\citation{martin2001database} +\citation{martin2001database} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.5}Algorithmes hybrides}{37}{subsection.2.6.5}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.18}{\ignorespaces Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}}}{38}{figure.2.18}} +\newlabel{fig-gPb}{{2.18}{38}{Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}\relax }{figure.2.18}{}} +\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{39}{chapter.3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {3.1}Pr\IeC {\'e}sentation - existant}{21}{section.3.1}} -\@writefile{toc}{\contentsline {section}{\numberline {3.2}La parall\IeC {\`e}lisation du snake polygonal}{21}{section.3.2}} -\@writefile{toc}{\contentsline {chapter}{\numberline {4}Le filtrage des images sur GPU}{23}{chapter.4}} +\@writefile{toc}{\contentsline {section}{\numberline {3.1}Pr\IeC {\'e}sentation - existant}{39}{section.3.1}} +\@writefile{toc}{\contentsline {section}{\numberline {3.2}La parall\IeC {\`e}lisation du snake polygonal}{39}{section.3.2}} +\@writefile{toc}{\contentsline {chapter}{\numberline {4}Le filtrage des images sur GPU}{41}{chapter.4}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {4.1}Algorithme de r\IeC {\'e}duction de bruit par recherche des lignes de niveaux}{23}{section.4.1}} -\@writefile{toc}{\contentsline {section}{\numberline {4.2}Filtre m\IeC {\'e}dian}{23}{section.4.2}} -\@writefile{toc}{\contentsline {section}{\numberline {4.3}Filtres de convolution}{23}{section.4.3}} -\bibdata{biblio.bib} -\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conclusion g\IeC {\'e}n\IeC {\'e}rale}{25}{chapter.5}} +\@writefile{toc}{\contentsline {section}{\numberline {4.1}Algorithme de r\IeC {\'e}duction de bruit par recherche des lignes de niveaux}{41}{section.4.1}} +\@writefile{toc}{\contentsline {section}{\numberline {4.2}Filtre m\IeC {\'e}dian}{41}{section.4.2}} +\@writefile{toc}{\contentsline {section}{\numberline {4.3}Filtres de convolution}{41}{section.4.3}} +\bibstyle{plain} +\bibdata{biblio} +\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conclusion g\IeC {\'e}n\IeC {\'e}rale}{43}{chapter.5}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} +\bibcite{kddcup99}{1} +\bibcite{kodakccd}{2} +\bibcite{adalsteinsson1994fast}{3} +\bibcite{agarwal2002exact}{4} +\bibcite{aldinucci2012parallel}{5} +\bibcite{arbelaez2011contour}{6} +\bibcite{arora1998approximation}{7} +\bibcite{bauer2009segmentation}{8} +\bibcite{bertaux2004speckle}{9} +\bibcite{boykov2004experimental}{10} +\bibcite{bresenham1965algorithm}{11} +\bibcite{1467423}{12} +\bibcite{BuadesCM06}{13} +\bibcite{Caselles99topographicmaps}{14} +\bibcite{5459410}{15} +\bibcite{cates2004gist}{16} +\bibcite{chandran2009computational}{17} +\bibcite{che2008performance}{18} +\bibcite{chen09}{19} +\bibcite{1093941}{20} +\bibcite{cheng1995mean}{21} +\bibcite{cherkassky1997implementing}{22} +\bibcite{ChesnaudRB99}{23} +\bibcite{cohen1993surface}{24} +\bibcite{comaniciu1999mean}{25} +\bibcite{comaniciu2002mean}{26} +\bibcite{cutrona1990synthetic}{27} +\bibcite{Dabov06imagedenoising}{28} +\bibcite{Dabov09bm3dimage}{29} +\bibcite{Daubechies:1992:TLW:130655}{30} +\bibcite{dixit2005gpu}{31} +\bibcite{elad2006image}{32} +\bibcite{felzenszwalb2004efficient}{33} +\bibcite{fluck2006gpu}{34} +\bibcite{foley1994introduction}{35} +\bibcite{ford1955simple}{36} +\bibcite{fukunaga1975estimation}{37} +\bibcite{fulkerson2012really}{38} +\bibcite{GallandBR03}{39} +\bibcite{GermainR01}{40} +\bibcite{nlmeansgpubelge}{41} +\bibcite{snakegvf06}{42} +\bibcite{healey1994radiometric}{43} +\bibcite{hochbaum2013simplifications}{44} +\bibcite{5170921}{45} +\bibcite{humphrey1924psychology}{46} +\bibcite{jeong2009scalable}{47} +\bibcite{5402362}{48} +\bibcite{KassWT88}{49} +\bibcite{keselman1998extraction}{50} +\bibcite{cmla2009Kes}{51} +\bibcite{kohli2007dynamic}{52} +\bibcite{lefohn2003inter}{53} +\bibcite{lefohn2003interactive}{54} +\bibcite{lefohn2005streaming}{55} +\bibcite{li2009mean}{56} +\bibcite{li2011robust}{57} +\bibcite{macqueen1967some}{58} +\bibcite{Mallat:2008:WTS:1525499}{59} +\bibcite{mancuso2001introduction}{60} +\bibcite{martin2001database}{61} +\bibcite{coil}{62} +\bibcite{osher1988fronts}{63} +\bibcite{4310076}{64} +\bibcite{PALHANOXAVIERDEFONTES}{65} +\bibcite{pelleg2000x}{66} +\bibcite{4287006}{67} +\bibcite{1521458}{68} +\bibcite{4587843}{69} +\bibcite{Roberts:2010:WGA:1921479.1921499}{70} +\bibcite{ronfard1994region}{71} +\bibcite{rumpf2001level}{72} +\bibcite{6288187}{73} +\bibcite{sethian1996fast}{74} +\bibcite{kmeansgpuopengl}{75} +\bibcite{shi2000normalized}{76} +\bibcite{snakegvfopencl12}{77} +\bibcite{convolutionsoup}{78} +\bibcite{graphcutscuda}{79} +\bibcite{strang1999discrete}{80} +\bibcite{theuwissen2001ccd}{81} +\bibcite{710815}{82} +\bibcite{tukey77}{83} +\bibcite{vedaldi2008quick}{84} +\bibcite{4563095}{85} +\bibcite{Vineet:2009:FMS:1572769.1572796}{86} +\bibcite{wang2001image}{87} +\bibcite{wang2003image}{88} +\bibcite{Wang04imagequality}{89} +\bibcite{wu1993optimal}{90} +\bibcite{xiao2010efficient}{91} +\bibcite{5206542}{92} +\bibcite{Zahn:1971:GMD:1309266.1309359}{93} +\bibcite{zheng2011performance}{94} +\bibcite{zheng2012fast}{95} +\citation{zheng2011performance} +\citation{graphcutscuda} +\citation{fulkerson2012really} +\citation{martin2001database}