X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/these_gilles.git/blobdiff_plain/5efa829cb4570828a242e2baced8b215ea6029d5..HEAD:/THESE/Chapters/chapter2/chapter2.tex?ds=sidebyside diff --git a/THESE/Chapters/chapter2/chapter2.tex b/THESE/Chapters/chapter2/chapter2.tex index 9788856..43ceac1 100644 --- a/THESE/Chapters/chapter2/chapter2.tex +++ b/THESE/Chapters/chapter2/chapter2.tex @@ -1,427 +1,13 @@ -L'étendue des techniques applicables aux images numériques est aujourd'hui si vaste qu'il serait illusoire de chercher à les décrire ici. Ce chapitre présente plus spécifiquement les algorithmes utilisés en présence d'images (fortement) bruitées. Le bruit rend potentiellement délicate l'extraction des informations utiles contenues dans les images pertubées ou en complique l'interpretation, qu'elle soit automatique ou confiée à la vision humaine. -L'intuition nous incite donc à chercher des méthodes efficaces de prétraitement pour réduire la puissance du bruit afin de permettre aux traitements de plus haut niveau comme la segmentation, d'opérer ensuite dans de meilleures conditions. - -Toutefois, il faut également considérer que les opérations préalables de réduction de bruit apportent des modifications statistiques aux images et influent donc potentiellement sur les caractéristiques que l'on cherche à mettre en évidence grâce au traitement principal. En ce sens, il peut-être préférable de chercher à employer des algorithmes de haut niveau travaillant directement sur les images bruitées pour minimiser les effets des altérations apportées par les filtres débruiteurs et conserver toute l'information contenue dans les images perturbées. - - Les images auxquelles nous nous intéressons sont généralement les images numériques allant des images naturelles telles que définies par Caselles \cite{} aux images d'amplitude isues de l'imagerie radar à ouverture synthétique (ROS ou en anglais SAR) \cite{}, de l'imagerie médicale à ultrasons (echographie) ou encore biologique dans le cas de la microscopie électronique. -Ces dispositifs d'acquisition sont naturellement, et par essence, générateurs de bruits divers, inhérents aux thechnologies mises en \oe uvre au sein de ces systèmes et qui viennent dégrader l'image idéale de la scène que l'on cherche à représenter ou analyser. On sait aujourd'hui caractériser de manière assez précise ces bruits et la section \ref{sec_bruits} en détaille les origines physiques ainsi que les propriétés statistiques qui en découlent. -On peut dores et déjà avancer que la connaissance de l'origine d'une image et donc des propriétés des bruits associés qui en corrompent les informations, est un atout permettant de concevoir des techniques de filtrage adaptées à chaque situation. Toutefois, la recherche d'un filtre universel, bien qu'encore illusoire, n'est pas abandonnée, tant les besoins sont nombreux, divers et souvent complexes. - -\section{Modèle d'image bruitée} -On considère qu'une image observée, de largeur $L$ pixels et de hauteur $H$ pixels, est un ensemble de $N=HL$ observations sur un domaine $\Omega$ à deux dimensions ($\Omega \subset \mathbb{Z}^2$). À chaque élément de $\Omega$, aussi appelé \textit{pixel}, est associé un indice unique $k \in [\![1;N]\!]$, une position $x_k=(i,j)_k \in\Omega$ et une valeur observée $v_k=v(i,j)_k$. -La valeur observée peut, selon les cas, être de dimension $1$ pour les images représentées en niveaux de gris ou de dimension 3 pour les images couleur représentées au format RVB. Les dimensions supérieures, pour la représentation des images hyperspectrales n'est pas abordé. -L'image observée peut ainsi être considérée comme un vecteur à $N$ éléments $\bar{v}= (v_k)_{k\in [\![1;N]\!]}$. -Les divers traitements appliqués aux images observées ont souvent pour but d'accéder aux informations contenues dans une image sous-jacente, débarrassée de toute perturbation, dont nous faisons l'hypothèse qu'elle partage le même support $\Omega$ et que nous notons $\bar{u}$. L'estimation de $\bar{u}$ réalisée par ces traitements est notée $\widehat{\bar{u}} = (\widehat{u}_k)_{k\in [\![1;N]\!]}$. -Le lien entre $\bar{u}$ et $\bar{v}$ peut être exprimé généralement par la relation $\bar{v}=\bar{u}+\sigma\epsilon$, où $\epsilon \in \mathbb{R}^N$ représente le modèle de perturbation appliquée à $\bar{u}$ et $\sigma$ représente la puissance de cette perturbation qui a mené à l'observation de $\bar{v}$. -Dans le cas général, $\epsilon$ dépend de $\bar{u}$ et est caractérisé par la densité de probabilité (PDF pour probability density function) $p(v|u)$. - -\section{Modèles de bruit} -\subsection{Le bruit gaussien} -Le bruit gaussien est historiquement le plus étudié et celui auquel sont dédiées le plus de techniques de débruitage. -La génération des images numériques au travers les capteurs CMOS et CCD \ref{} est le siège de nombreuses perturbations dues à la technologie de fabrication et à la nature du rayonnement dont ils mesurent l'intensité en différents zones de leur surface, appelées \textit{photosites}. -On distingue en particulier les bruits suivants selon leur origine physique : -\begin{itemize} -\item la non uniformité de réponse des photosites. -\item le bruit de photon -\item le bruit de courant d'obscurité -\item le bruit de lecture -\item le bruit de non uniformité d'amplification des gains des photosites. -\end{itemize} -Des descriptions détaillées des mécanismes concourant à la génération de ces bruits sont fournies dans \ref{phelippeau p80} -Dans un certain intervalle usuel d'intensité lumineuse, il est toutefois admis que l'ensemble des ces perturbations peut être représenté par un seul bruit blanc gaussien, de type \textit{additif} (AWGN), dont la densité de probabilité suit une loi normale de moyenne nulle et de variance $\sigma^2$. -On a alors l'expression suivante, où $\sigma >0$ -\[p(v|u)=\frac{1}{\sqrt{2}\pi\sigma}\mathrm{e}^{-\frac{(v-u)^2}{2\sigma^2}}\] - -\subsection{Le speckle} -En imagerie radar, sonar ou médicale, les surfaces que l'on veut observer sont ``éclairées'' par des sources cohérentes. Les propriétés locales de ces surfaces sont le siège de réflexions multiples qui interfèrent entre elles pour générer un bruit de tavelures, ou speckle, dont l'intensité dépend de l'information contenue dans le signal observé. - -Le speckle est ainsi un bruit de type \textit{multiplicatif} qui confère aux observations une très grande variance qui peut-être réduite en moyennant plusieurs observations, ou vues, de la même scène. Si $L$ est le nombre de vues, le speckle est traditionnellement modélisé par la PDF suivante : -\[p(v \mid u)=\frac{L^2v^{(L-1)}\mathrm{e}^{-L\frac{v}{u}}}{\Gamma (L)u^L} \] -L'espérance vaut $\mathrm{E}\left[v\right]=u$ et la variance $\sigma^2=\frac{u^2}{L}$ est effectivement inversement proportionnelle à $L$, mais pour le cas mono vue où $L=1$, la variance vaut $u^2$, soit un écart type du signal $v$ égal à sa moyenne. - -\subsection{Le bruit ``sel et poivre''} -Le bruit \textit{sel et poivre}, ou bruit \textit{impulsionnel} trouve son origine dans les pixels défectueux des capteurs ou dans les erreurs de transmission. Il tire son nom de l'aspect visuel de la dégradation qu'il produit : des pixels noirs et blancs répartis dans l'image. -Le bruit impulsionnel se caractérise par la probabilité $P$ d'un pixel d'être corrompu. La PDF peut alors être exprimée par parties comme suit, pour le cas d'images en 256 niveaux de gris (8 bits) : - -\[p(v \mid u)= -\begin{cases} -\frac{P}{2}+(1-P) & \text{si $v=0$ et $u=0$}\\ -\frac{P}{2}+(1-P) & \text{si $v=255$ et $u=255$}\\ -\frac{P}{2} & \text{si $v=0$ et $u \neq 0$}\\ -\frac{P}{2} & \text{si $v=255$ et $u \neq 255$}\\ -(1-P) & \text{si $v=u$ et $u \notin \{0, 255\}$}\\ -0 & sinon -\end{cases} - \] - -\subsection{Le bruit de Poisson} -Aussi appelé \textit{bruit de grenaille} (shot noise), ce type de bruit est inhérent aux dispositifs de détection des photons. Il devient prépondérant dans des conditions de faible éclairement, lorsque la variabilité naturelle du nombre de photons reçus par un photosite par intervalle d'intégration influe sur les propriétés statistiques du signal. -Le bruit de grenaille est de type multiplicatif et suit une loi de Poisson. La PDF peut s'écrire comme suit : -\[ p(v \mid u)=\mathrm{e}\frac{u^v}{v!}\] - -\section{Les techniques de réduction de bruit} -La très grande majorité des algorithmes de réduction de bruit fait l'hypothèse que la perturbation est de type gaussien, même si le développement des systèmes d'imagerie radar et médicale a favorisé l'étude des bruits multiplicatifs du type \textit{speckle} ou \textit{Poisson}. -Un très grand nombre de travaux proposant des méthodes de réduction de ces bruits ont été menés, ainsi que beaucoup d'états de l'art et d'études comparatives de ces diverses techniques, que nous n'avons pas l'ambition d'égaler. - -Nous nous focaliserons sur les techniques en lien avec les travaux que nous avons menés et qui ont donné lieu à des implémentations efficaces susceptibles de fournir des éléments opérationnels rapides pour le prétraitement des images. - -La figure \ref{fig-ny-noises} montre une image de synthèse issue de la base de test COIL \ref{adresse}, supposée sans bruit et qui sera considérée comme référence, ainsi que deux versions bruitées, respectivement avec un bruit gaussien d'écart type 25 et un bruit impulsionnel affectant 25\% des pixels. -\begin{figure} - \centering - \subfigure[Sans bruit]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/ny256.png}} - \subfigure[Bruit gaussien $\sigma=25$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/ny256_gauss25.png}} - \subfigure[Bruit impulsionnel 25\%]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/ny256_sap25.png}} - \caption{Images 256$\times$256 en niveau de gris 8 bits utilisées pour l'illustration des propriétés des filtres. a) l'image de référence non bruitée. b) l'image corrompue par un bruit gaussien d'écart type $\sigma=25$. c) l'image corrompue par un bruit impulsionnel à 25\%.} -\label{fig-ny-noises} -\end{figure} - -\subsection{Les opérateurs de base} -\subsubsection{Les algorithmes de voisinage} -L'opération la plus employée dans les procédés de traitement d'image est sans doute la convolution. Selon les valeurs affectées aux coefficients du masque, le filtrage par convolution permet de réaliser bon nombre de traitements comme la réduction de bruit par moyennage ou noyau gaussien ou encore la détection de contours. -Si la fonction définissant le masque de convolution est notée $h$, l'expression générale de la valeur estimée de pixel de coordonnées $(i,j)$ est donnée par -\begin{equation} -\widehat{u}(x, y) = \left(\bar{v} * h\right) = \sum_{(i < H)} \sum_{(j < L)}v(x-j, y-i)h(j,i) -\label{convoDef} -\end{equation} -Dans les applications les plus courantes, $h$ est à support borné et de forme carrée et l'on parle alors de la taille du masque pour évoquer la dimension du support. - La figure \ref{fig-ny-convo} présente les résultats de la convolution par deux masques \textit{moyenneurs} $h_3$ et $h_5$ de taille différentes, appliqués à l'image corrompue par un bruit gaussien : on voit la diminution des fluctuations mais aussi le flou apporté et qui rend les contours d'autant moins définis que la taille du masque est grande. La troisième image montre le résultat de la convolution de l'image de référence par un masque \textit{dérivateur} $h_{dx}$ selon l'axe horizontal. On y constate la mise en évidence, incomplète, des contours. -Les matrices définissant les masques sont les suivantes : - -\[h_3=\frac{1}{9}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}, h_{25}=\frac{1}{25}\begin{bmatrix}1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\end{bmatrix}, h_{dx}= \begin{bmatrix}0&0&0\\-1&1&0\\0&0&0\end{bmatrix}\] - -\begin{figure} - \centering - \subfigure[Moyenneur 3$\times$3]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/convo/ny256_gauss25_moy3.png}} - \subfigure[Moyenneur 5$\times$5]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/convo/ny256_gauss25_moy5.png}} - \subfigure[Dérivateur horizontal]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/convo/ny256_2dx.png}} -\caption{.} -\label{fig-ny-convo} -\end{figure} - -Le filtrage médian \ref{médian\_tukey} est également une opération très employée en prétraitement pour sa simplicité et ses propriétés de préservation des contours alliées à une capacité de réduction de bruit gaussien importante. -La valeur du niveau de gris de chaque pixel est remplacée par la médiane des niveaux de gris des pixels voisins. Un des intérêts de ce filtre réside dans le fait que la valeur filtrée est une des valeurs du voisinage, contrairement à ce qui se produit lors d'une convolution. Un autre est de bien filtrer les valeurs extrêmes et par conséquent de trouver naturellement son application dans la réduction du bruit impulsionnel. -Toutefois, la non-linéraité de cette technique et sa complexité n'en ont pas fait un filtre très utilisé jusqu'à ce que des implémentation efficaces soient proposées, en particulier le filtre à temps de calcul ``constant'' décrit dans \ref{medianO(1)}. Il est à noter que le filtrage médian est souvent appliqué en plusieurs passes de voisinage restreint. -La figure \ref{fig-ny-median} montre la réduction de bruit impulsionnel obtenu grâce au filtre médian, dans trois conditions distinctes : median 3$\times$3 en une ou deux passes, puis médian 5$\times$5. -\begin{figure} - \centering - \subfigure[Médian 3$\times$3 une passe]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/median/ny256_sap25_med3.png}} - \subfigure[Médian 3$\times$3 deux passes]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/median/ny256_sap25_med3x2.png}} - \subfigure[Médian 5$\times$5 une passe]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/median/ny256_sap25_med5.png}} -\caption{Réduction du bruit impulsionnel par filtre médian.} -\label{fig-ny-median} -\end{figure} - -Le filtre bilatéral \ref{bilatéral\_filter} est une composition d'opérations que l'on peut voir comme un filtre de convolution dont les coefficients ne dépendraient pas uniquement de la position du pixel courant par rapport au pixel central, mais également de la différence de leurs intensités (cas des images en niveaux de gris). -Si l'on note $\Omega_k$ le voisinage du pixel d'indice $k$, l'expression générale du niveau de gris estimé est donnée par -\[\widehat{u_k}=\displaystyle\frac{\sum_{p\in \Omega_k}\left(F_S(x_p, x_k)F_I(v_p, v_k)v_p\right)}{\sum_{p\in\Omega_k }\left(F_S(x_p, x_k)F_I(v_p, v_k)\right)} \] -où $F_S$ et $F_I$ sont les fonctions de pondération spatiale et d'intensité. Classiquement, $F_S$ et $F_I$ sont des gaussiennes de moyennes nulles et d'écarts type $\sigma_S$ et $\sigma_I$. -Ce filtre se prête également bien à une utilisation en plusieurs passes sans flouter les contours. Des approximations séparables du filtre bilatéral, comme celle proposée dans \ref{bilateral-sep}, permettent d'obtenir des vitesses d'exécution plus élevées que les versions standard. Une variante à temps de calcul constant à même été proposée en 2008 par Porikli \ref{dans bilateral-sep ref 1 porikli}. -Ce filtre permet un bon niveau de réduction de bruit gaussien, mais au prix d'un nombre de paramètres plus élevé à régler, ce qu'illustre la figure \ref{fig-ny-bilat} où le filtrage de la même image a été réalisé avec 9 combinaisons de $\sigma_S$ et $\sigma_I$. -\begin{figure} - \centering -\subfigure[$\sigma_S=1.0$ et $\sigma_I=0.1$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_1_01.png}} -\subfigure[$\sigma_S=1.0$ et $\sigma_I=0.5$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_1_05.png}} -\subfigure[$\sigma_S=1.0$ et $\sigma_I=1.0$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_1_1.png}}\\ -\subfigure[$\sigma_S=2.0$ et $\sigma_I=0.1$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_2_01.png}} -\subfigure[$\sigma_S=2.0$ et $\sigma_I=0.5$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_2_05.png}} -\subfigure[$\sigma_S=2.0$ et $\sigma_I=1.0$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_2_1.png}}\\ -\subfigure[$\sigma_S=5.0$ et $\sigma_I=0.1$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_5_01.png}} -\subfigure[$\sigma_S=5.0$ et $\sigma_I=0.5$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_5_05.png}} -\subfigure[$\sigma_S=5.0$ et $\sigma_I=1.0$]{\includegraphics[width=4cm]{/home/zulu/Documents/these_gilles/THESE/codes/bilat/ny_gauss25_bilat_5_1.png}}\\ -\caption{Réduction de bruit gaussien par filtrage bilatéral de voisinage 5$\times$5. $\sigma_S$ et $\sigma_I$ sont les écarts type des fonctions gaussiennes de pondération spatiale et d'intensité.} -\label{fig-ny-bilat} -\end{figure} - - -Beaucoup d'autres algorithmes basés sur des moyennes locales efféctuées sur des voisinages de formes diverses, variables et/ou adaptatives afin de sélectionner le plus finement possible les pixels pris en compte dans le calcul de la valeur filtrée. -Le principal défaut de ces techniques dites de réduction de variance est de générer des aplats dans les zones homogènes et des marches d'escalier dans les zones de transition douce (staircase effect), ces dernières pouvant être considérablement atténuées comme il a été montré dans \ref{staircase-effect}. - -\subsubsection{Les algorithmes par dictionnaire} -Il s'agit ici de décrire l'image à débruiter en utilisant une base de fonctions permettant de décomposer l'image en une combinaison linéaire des éléments de cette base. Les bases les plus employées sont les ondelettes \ref{mallat2009-deladallep15, daubechie} ainsi que les fonctions sinusoïdales (DCT \ref{irfu}). Les éléments de la base peuvent être prédéterminés ou bien calculés à partir des données de l'image, par exemple en s'appuyant sur une analyse en composantes principales \ref{Aharon-2006 deladallep67}. - -\subsection{Les techniques avancées} -Les techniques de réduction de bruit les plus efficaces sont aujourd'hui celles qui reposent sur les propriétés d'auto-similarité ds images, on les appelles aussi les techniques par patchs. L'idée principale est, comme pour les techniques classiques à base de de voisinage, de rechercher un ensemble de pixels pertinents et comparables afin d'en faire une moyenne. Cependant, dans le cas des techniques à patchs, la recherche de cet ensemble ne se limite pas à un voisinage du pixel central, mais fait l'hypothèse qu'il existe des zones semblables au voisinage du pixel central, réparties dans l'image et pas nécessairement immédiatement contigues. -Le moyennage s'effectue alors sur l'ensemble des ces zones identifiées. -L'algorithme des Non-Local Means (NL-means \ref{nl-means}) fut le premier de cette lignée à être proposé, mais bien d'autres suivirent comme le BM3D et ses variantes qui représentent actuellement l'état de l'art en terme de qualité de débruitage \ref{bm3D}. - Les différences entre ces algorithmes résident essentiellement dans la méthode de recherche et d'identification des patchs similaires, incluant la possiblité de forme et taille variables. Une telle recherche est d'autant plus coûteuse en temps de calcul qu'elle est effectuée sur une zone étendue autour du pixel central et cela représente le principal inconvénient de ces techniques qui peuvent présenter des temps d'exécution prohibitifs dans l'optique d'un traitement en temps réel. - -\section{Les implémentations GPU des algorithmes de filtrage} -Le fabricant de processeurs graphiques Nvidia, seul type d'équipements dont nous disposons, fournit des implémentations performantes de certains prétraitements et algorithmes de filtrage. -%TODO -%Ajouter qq mots sur FFT, DCT utilisés dans irfu et que nous n'avons pas cherché à améliorer. -C'est en particulier le cas de la convolution qui a fait l'objet d'une étude et d'une optimisation poussées pour déterminer la combinaison de solutions apportant la plus grande vitesse d'exécution \ref{convolution-soup-gtc09}. L'étude a testé 16 versions distinctes, chacune présentant une optimisation particulière quant-à l'organisation de la grille de calcul, aux types de transferts entre l'hôte et le GPU ainsi qu'au types de mémoire employé pour le calcul sur le GPU. Les résultats montrent que l'emploi de texture comme mémoire principale pour le stockage des images à traiter apporte un gain d'environ 50\% par rapport à l'utilisation de la mémoire globale. Par ailleurs, les transactions par paquets de 128 bits apportent également une amélioration sensible, ainsi que l'emploi de la mémoire partagée comme zone de travail pour le calcul des valeurs de sortie. Le traitement de référence effectué pour les mesures est la convolution générique (non séparable) d'une image 8 bits de 2048$\times$2048 pixels par un masque de convolution de 5$\times$5 pixels, expression que l'on raccourcira déronavant en \textit{convolution 5$\times$5}. -Le meilleur résultat obtenu dans les conditions détaillées précédemment, sur architecture GT200 (carte GTX280) est de 1.4~ms pour le calcul, ce qui réalise un débit global de 945~MP/s lorsque l'on prend en compte les temps de transfert aller et retour des images (1.5~ms d'après nos mesures). -Nous continuerons d'utiliser cette mesure de débit en \textit{Pixels par seconde} pour toutes les évaluations à venir ; elle permet en particulier de fournir des valeurs de performance indépendantes de la taille des images soumises au traitement. - -Le filtre médian n'a pas fait l'objet d'autant de publications, peut-être en raison des implémentations CPU performantes et génériques que l'on a déjà évoquées \ref{median0(1)}. Néanmoins, une bibliothèque commerciale (LibJacket, ArrayFire) en propose une implémentation GPU dont nous avons pu mesurer les performances pour un masque de 3$\times$3 et qui est également prise comme référence par Sanchez \textit{et al.} pour évaluer les performances de leur propre implémentation appelée PCMF \ref{median sanchez x2}. Sur architecture GT200 (GTX260), les performances maximales de ces deux versions sont obtenues pour un masque de 3$\times$3 pixels avec respectivement 175~MP/s pour libJacket et 60~MP/s pour PCMF. -La figure \ref{fig-compare-jacket-pcmf}, tirée de \ref{median sanchez}, montre que le débit permis par la libJacket décroit très vite avec la taille du masque pour passer à 30~MP/s dès la taille 5$\times$5, alors que le PCMF décroit linéairement jusqu'à la taille 11$\times$11 où il permet encore de traiter quelque 40~MP/s. -Plus récemment, Sanchez \textit{et al.} ont actualisé leurs mesures sur architecture Fermi (GPU C2075) en comparant leur PCMF à la version ré-écrite en C de libJacket, nommée ArrayFire. Les courbes sont celles de la figure \ref{fig-compare-arrayfire-pcmf}, où l'on constate que les variations selon la taille du masque demeurent comparables, avec toutefois des valeurs de débit augmentées, avec près de 185~MP/s pour ArrayFire et 82~MP/s pour PCMF. Il faut aussi noter que certains codes sont plus performants sur l'ancienne architecture GT200 que sur la plus récente Fermi ; c'est le cas pour l'implémentation du médian incluse dans la bibliothèque ArrayFire et nous reviendrons sur les raisons de cette perte de performances constatée au passage à une architecture plus récente dans le chapitre consacré à notre implémentation du filtre médian. - -Le filtre bilatéral a été plus abordé et un certain nombre de publications font état d'implémentations véritablement rapides. Il est néanmoins parfois difficile de les comparer sans disposer des codes sources, en raison de conditions de test très variables, en particulier en ce qui concerne le modèle de GPU et la taille du masque . Ceci étant précisé, on peut prendre comme référence initiale la version proposée par Nvidia dans le SDK CUDA et nommée ``ImageDenoising''. Elle permet d'exécuter sur GPU GTX480 un filtre bilatéral 7$\times$7 sur une image, déjà en mémoire GPU, de 1~MPixels en 0.411~ms. - - -\section{Les techniques de segmentation} -La segmentation représente également un enjeu important dans le domaine du traitement d'image et à ce titre a fait l'objet d'abondants travaux et publications touchant les nombreux cas d'analyse dans lesquels une segmentation est utilisée. On peut citer la reconnaissance de formes, la détections et/ou la poursuite de cibles, la cartographie, le diagnostique médical, l'interaction Homme-machine, la discrimination d'arrière plan, etc. - -On pourrait donner de la segmentation une définition spécifique par type d'usage, mais dans un souci d'unification, on propose la formulation générique suivante : -``La segmentation consiste à distinguer les zones homogènes au sein d'une image''. -Dans cette définition, le caractère \textit{homogène} s'entend au sens d'un critère pré établi, adapté aux contraintes particulières de traitement comme le type de bruit corrompant les images, ou bien la dimension du signal observé $\bar{v}$ selon que l'image est en couleur ou non. Un tel critère peut ainsi être un simple seuil de niveau de gris ou bien nécessiter de coûteux calculs statistiques dont certains seront détaillés dans les chapitres suivants. - -Devant la diversité des cas à traiter et des objectifs à atteindre, on sait aujourd'hui qu'à l'instar du filtre unique, la méthode universelle de segmentation n'existe pas et qu'une bonne segmentation est celle qui conduit effectivement à l'extraction des structures pertinentes d'une image selon l'interprétation qui doit en être faite. - -Les éléments constitutifs de la segmentation sont soit des régions, soit des contours. Les deux notions sont complémentaires étant donné que les contours délimitent des régions, mais les techniques de calcul basés sur l'un ou l'autre de ces éléments relèvent d'abords différents. -Les algorithmes de segmentation orientés régions s'appuient pour beaucoup sur des techniques de regroupement, ou \textit{clustering}, pour l'identification et le peuplement des régions. Ce lien trouve son origine dans la psychologie du \textit{gestalt} \ref{biblio_web} où l'on considère que la perception conceptuelle s'élabore au travers de regroupements visuel d'éléments. -La plupart des approches proposées jusqu'à très récemment consistent à minimiser une fonction d'énergie qui n'a pas de solution formelle et que l'on résout donc à l'aide de techniques numériques, souvent itératives. - -\subsection{Analyse d'histogramme} -Les techniques les plus simples à mettre en \oe uvre en segmentation sont les techniques de seuillage, basées sur une analyse de l'histogramme des niveaux de gris (ou de couleurs) et cherchant à en distinguer les différentes classes comme autant d'occurrences représentant des \textit{régions} homogènes. -Différents critères peuvent être appliqués pour cette analyse, visant par exemple à maximiser la variance \ref{otsu79} ou encore à maximiser le contraste pour déterminer les valeurs pertinentes des seuils. -Malgré la multitude de variantes proposées, ces méthodes demeurent toutefois peu robustes et présentent l'inconvénient majeur de ne pas garantir la connexité des régions déterminées. On les réserve à des applications très spécifiques où, par exemple, on dispose d'une image de référence dont l'histogramme peut être comparé à celui des images à traiter. C'est le cas de certaines application de contrôle industriel où la simplicité algorithmique permet de surcroît des implémentations très rapides, voire câblées. -Ces techniques sont aujourd'hui considérées comme rudimentaires mais les calculs d'histogrammes et les analyses associées interviennent dans beaucoup d'algorithmes récents parmi les plus évolués et performants. -La figure \ref{fig-histo-cochon} illustre le traitement typique de l'histogramme de l'image d'entrée \ref{fig-histo-cochon-a} dans le but de distinguer les deux régions du fond et du cochon (la cible). La première étape consiste à dresser l'histogramme des niveaux de gris sur tout le domaine de l'image \ref{fig-histo-cochon-b}. Il faut ensuite identifier le seuil de séparation des deux régions supposées, ici, homogènes au sens des valeurs de niveau de gris. Une estimation visuelle peut-être faite, mais on voit immédiatement que même dans une situation aussi claire, le choix du seuil n'est pas évident. Pour un traitement automatique, on peut par exemple proposer la technique itérative présentée par l'Algorithme \ref{algo-histo-cochon} qui conduit à la segmentation de la figure \ref{fig-histo-cochon-c}. L'image \ref{fig-histo-cochon-d} est l'image initiale, corrompue par un bruit gaussien de moyenne nulle et d'écart type 25 . Les résultats de la segmentation (\ref{fig-histo-cochon-c} et \ref{fig-histo-cochon-f}) de cette image sont clairement insuffisants le segment de la cible comporte des discontinuités et dans le cas de l'image bruitée, des pixels orphelins épars demeurent en quantité. Cette technique nécessiterait une étape supplémentaire pour disposer d'une segmentation pertinente. - -\begin{figure} - \centering - \subfigure[Image initiale comportant deux zones : le fond et le cochon (la cible)]{\label{fig-histo-cochon-a} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/cochon256.png}}\quad - \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-b} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/histo-cochon256.png}}\quad - \subfigure[Image binaire représentant la segmentation. Seuil estimé à 101 après 4 itérations.]{\label{fig-histo-cochon-c} \includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/cochon256-seghisto-101-255.png}}\\ -\subfigure[Image initiale bruitée]{\label{fig-histo-cochon-d} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/cochon256-sig25.png}}\quad - \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-e} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/histo-cochon256-sig25.png}}\quad - \subfigure[Image binaire représentant la segmentation. Seuil estimé à 99 après 5 itérations.]{\label{fig-histo-cochon-f} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/cochon256-sig25-seghisto-99-255.png}} - \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation.} -\label{fig-histo-cochon} -\end{figure} - -\begin{algorithm} - \SetNlSty{textbf}{}{:} - \SetKwComment{Videcomment}{}{} -\caption{Calcul du seuil de séparation des segments de l'histogramme.} -\label{algo-histo-cochon} -$\overline{h} \leftarrow $ histogramme sur l'image \; -$S_{init} \leftarrow 128$ \; -$S_k \leftarrow S_{init}$ \; -$\epsilon \leftarrow 1$ \; -\Repeat{$\|S_k - \frac{1}{2}(\mu_{inf} + \mu_{sup})\| < \epsilon $}{ - $\mu_{inf}=\displaystyle \frac{\displaystyle\sum_{i