X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/these_gilles.git/blobdiff_plain/ff0ebed5c39c0a88ca421af419f738d458bd4aee..82c062292d36ed7f5cb8e3e913382ca8c47eb379:/THESE/these.aux diff --git a/THESE/these.aux b/THESE/these.aux index c83dbe8..39abc51 100644 --- a/THESE/these.aux +++ b/THESE/these.aux @@ -22,75 +22,220 @@ \@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{7}{chapter.1}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} +\citation{Caselles99topographicmaps} +\citation{cutrona1990synthetic} \@writefile{toc}{\contentsline {chapter}{\numberline {2}Le traitement des images bruit\IeC {\'e}es}{11}{chapter.2}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {2.1}Mod\IeC {\`e}le d'image bruit\IeC {\'e}e}{12}{section.2.1}} +\@writefile{toc}{\contentsline {section}{\numberline {2.1}Mod\IeC {\`e}le d'image bruit\IeC {\'e}e}{11}{section.2.1}} +\citation{mancuso2001introduction} +\citation{theuwissen2001ccd} +\citation{healey1994radiometric} +\citation{kodakccd} \@writefile{toc}{\contentsline {section}{\numberline {2.2}Mod\IeC {\`e}les de bruit}{12}{section.2.2}} +\newlabel{sec_bruits}{{2.2}{12}{Modèles de bruit\relax }{section.2.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Le bruit gaussien}{12}{subsection.2.2.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Le speckle}{12}{subsection.2.2.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Le bruit ``sel et poivre''}{13}{subsection.2.2.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Le bruit de Poisson}{13}{subsection.2.2.4}} \@writefile{toc}{\contentsline {section}{\numberline {2.3}Les techniques de r\IeC {\'e}duction de bruit}{13}{section.2.3}} -\@writefile{toc}{\contentsline {section}{\numberline {2.4}Les techniques de segmentation}{14}{section.2.4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Analyse d'histogramme}{14}{subsection.2.4.1}} -\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces Calcul du seuil de s\IeC {\'e}paration des segments de l'histogramme.}}{15}{algocfline.1}} -\newlabel{algo-histo-cochon}{{1}{15}{Analyse d'histogramme\relax }{algocfline.1}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Analyse de graphe}{15}{subsection.2.4.2}} -\newlabel{fig-histo-cochon-a}{{2.1(a)}{16}{Subfigure 2 2.1(a)\relax }{subfigure.2.1.1}{}} -\newlabel{sub@fig-histo-cochon-a}{{(a)}{16}{Subfigure 2 2.1(a)\relax }{subfigure.2.1.1}{}} -\newlabel{fig-histo-cochon-b}{{2.1(b)}{16}{Subfigure 2 2.1(b)\relax }{subfigure.2.1.2}{}} -\newlabel{sub@fig-histo-cochon-b}{{(b)}{16}{Subfigure 2 2.1(b)\relax }{subfigure.2.1.2}{}} -\newlabel{fig-histo-cochon-c}{{2.1(c)}{16}{Subfigure 2 2.1(c)\relax }{subfigure.2.1.3}{}} -\newlabel{sub@fig-histo-cochon-c}{{(c)}{16}{Subfigure 2 2.1(c)\relax }{subfigure.2.1.3}{}} -\newlabel{fig-histo-cochon-d}{{2.1(d)}{16}{Subfigure 2 2.1(d)\relax }{subfigure.2.1.4}{}} -\newlabel{sub@fig-histo-cochon-d}{{(d)}{16}{Subfigure 2 2.1(d)\relax }{subfigure.2.1.4}{}} -\newlabel{fig-histo-cochon-e}{{2.1(e)}{16}{Subfigure 2 2.1(e)\relax }{subfigure.2.1.5}{}} -\newlabel{sub@fig-histo-cochon-e}{{(e)}{16}{Subfigure 2 2.1(e)\relax }{subfigure.2.1.5}{}} -\newlabel{fig-histo-cochon-f}{{2.1(f)}{16}{Subfigure 2 2.1(f)\relax }{subfigure.2.1.6}{}} -\newlabel{sub@fig-histo-cochon-f}{{(f)}{16}{Subfigure 2 2.1(f)\relax }{subfigure.2.1.6}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{16}{figure.2.1}} -\newlabel{fig-histo-cochon}{{2.1}{16}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation}{figure.2.1}{}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{16}{figure.2.1}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{16}{figure.2.1}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}kernel-means, mean-shift et d\IeC {\'e}riv\IeC {\'e}s}{17}{subsection.2.4.3}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{18}{figure.2.2}} -\newlabel{fig-graph-cochon}{{2.2}{18}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 à 5}{figure.2.2}{}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{18}{figure.2.2}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{18}{figure.2.2}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{18}{figure.2.2}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{18}{figure.2.2}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{19}{figure.2.3}} -\newlabel{fig-kmeans-cochon}{{2.3}{19}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 à 5. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.3}{}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{19}{figure.2.3}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{19}{figure.2.3}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{19}{figure.2.3}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{19}{figure.2.3}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{20}{figure.2.4}} -\newlabel{fig-meanshift-cochon}{{2.4}{20}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 à 5. Le volume minimal admis pour un segment est fixé à 100 pixels. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.4}{}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{20}{figure.2.4}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{20}{figure.2.4}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{20}{figure.2.4}} -\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{20}{figure.2.4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Les contours actifs, ou \textit {snakes}}{20}{subsection.2.4.4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.5}M\IeC {\'e}thodes hybrides}{21}{subsection.2.4.5}} -\@writefile{toc}{\contentsline {section}{\numberline {2.5}L'\IeC {\'e}tat de l'art des impl\IeC {\'e}mentations GPU}{22}{section.2.5}} -\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{23}{chapter.3}} +\citation{coil} +\citation{Wang04imagequality} +\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Images 256$\times $256 en niveau de gris 8 bits utilis\IeC {\'e}es pour l'illustration des propri\IeC {\'e}t\IeC {\'e}s des filtres. a) l'image de r\IeC {\'e}f\IeC {\'e}rence non bruit\IeC {\'e}e. b) l'image corrompue par un bruit gaussien d'\IeC {\'e}cart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel \IeC {\`a} 25\%.}}{14}{figure.2.1}} +\newlabel{fig-ny-noises}{{2.1}{14}{Images 256$\times $256 en niveau de gris 8 bits utilisées pour l'illustration des propriétés des filtres. a) l'image de référence non bruitée. b) l'image corrompue par un bruit gaussien d'écart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel à 25\%}{figure.2.1}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Sans bruit}}}{14}{figure.2.1}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Bruit gaussien $\sigma =25$, PSNR=22.3~dB MSSIM=0.16}}}{14}{figure.2.1}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Bruit impulsionnel 25\%, PSNR=9.48~dB MSSIM=0.04}}}{14}{figure.2.1}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Les op\IeC {\'e}rateurs de base}{14}{subsection.2.3.1}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1.1}Les algorithmes de voisinage}{14}{subsubsection.2.3.1.1}} +\citation{tukey77} +\citation{4287006} +\citation{710815} +\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Filtrage par convolution.}}{15}{figure.2.2}} +\newlabel{fig-ny-convo}{{2.2}{15}{Filtrage par convolution}{figure.2.2}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Moyenneur 3$\times $3, PSNR=27.6dB MSSIM=0.34}}}{15}{figure.2.2}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Moyenneur 5$\times $5, PSNR=27.7dB MSSIM=0.38}}}{15}{figure.2.2}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Filtre gaussien 3$\times $3, PSNR=27.4dB MSSIM=0.33}}}{15}{figure.2.2}} +\newlabel{convoDef}{{2.1}{15}{Les algorithmes de voisinage\relax }{equation.2.3.1}{}} +\citation{1521458} +\citation{4587843} +\citation{BuadesCM06} +\citation{Mallat:2008:WTS:1525499} +\citation{Daubechies:1992:TLW:130655} +\citation{1093941} +\citation{strang1999discrete} +\citation{elad2006image} +\citation{elad2006image} +\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces R\IeC {\'e}duction du bruit impulsionnel par filtre m\IeC {\'e}dian.}}{16}{figure.2.3}} +\newlabel{fig-ny-median}{{2.3}{16}{Réduction du bruit impulsionnel par filtre médian}{figure.2.3}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 une passe, PSNR=26.4~dB MSSIM=0.90}}}{16}{figure.2.3}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 deux passes, PSNR=34.4~dB MSSIM=0.98}}}{16}{figure.2.3}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {M\IeC {\'e}dian 5$\times $5 une passe, PSNR=35.1~dB MSSIM=0.98}}}{16}{figure.2.3}} +\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1.2}Les algorithmes par dictionnaire}{16}{subsubsection.2.3.1.2}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces R\IeC {\'e}duction de bruit gaussien par filtrage bilat\IeC {\'e}ral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les \IeC {\'e}carts type des fonctions gaussiennes de pond\IeC {\'e}ration spatiale et d'intensit\IeC {\'e}.}}{17}{figure.2.4}} +\newlabel{fig-ny-bilat}{{2.4}{17}{Réduction de bruit gaussien par filtrage bilatéral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les écarts type des fonctions gaussiennes de pondération spatiale et d'intensité}{figure.2.4}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.1$, PSNR=25.6~dB MSSIM=0.25}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.5$, PSNR=28.0~dB MSSIM=0.36}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=1.0$, PSNR=27.9~dB MSSIM=0.36}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.1$, PSNR=26.7~dB MSSIM=0.29}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.5$, PSNR=27.9~dB MSSIM=0.39}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=1.0$, PSNR=27.5~dB MSSIM=0.38}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.1$, PSNR=26.8~dB MSSIM=0.29}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.5$, PSNR=26.8~dB MSSIM=0.37}}}{17}{figure.2.4}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(i)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=1.0$, PSNR=25.9~dB MSSIM=0.36}}}{17}{figure.2.4}} +\citation{1467423} +\citation{Dabov06imagedenoising} +\citation{Dabov09bm3dimage} +\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces Filtrage par d\IeC {\'e}composition en ondelettes et seuillage dur des coefficients inf\IeC {\'e}rieurs au seuil $T$.}}{18}{figure.2.5}} +\newlabel{fig-ny-dwt}{{2.5}{18}{Filtrage par décomposition en ondelettes et seuillage dur des coefficients inférieurs au seuil $T$}{figure.2.5}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$T=20$, PSNR=26.9~dB MSSIM=0.30}}}{18}{figure.2.5}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$T=35$, PSNR=27.6~dB MSSIM=0.36}}}{18}{figure.2.5}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$T=70$, PSNR=26.7~dB MSSIM=0.37}}}{18}{figure.2.5}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Les techniques avanc\IeC {\'e}es}{18}{subsection.2.3.2}} +\citation{cmla2009Kes} +\citation{convolutionsoup} +\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces Filtrage par NL-means pour diff\IeC {\'e}rentes combinaisons des param\IeC {\`e}tres de similarit\IeC {\'e} $f$ et de non localit\IeC {\'e} $t$.}}{19}{figure.2.6}} +\newlabel{fig-ny-nlm}{{2.6}{19}{Filtrage par NL-means pour différentes combinaisons des paramètres de similarité $f$ et de non localité $t$}{figure.2.6}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$f=2$ et $t=2$, PSNR=28.5~dB MSSIM=0.37}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$f=2$ et $t=5$, PSNR=28.6~dB MSSIM=0.38}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$f=5$ et $t=2$, PSNR=29.0~dB MSSIM=0.39}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$f=5$ et $t=5$, PSNR=29.0~dB MSSIM=0.40}}}{19}{figure.2.6}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41}}{19}{figure.2.7}} +\newlabel{fig-ny-bm3d}{{2.7}{19}{Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41\relax }{figure.2.7}{}} +\@writefile{toc}{\contentsline {section}{\numberline {2.4}Les impl\IeC {\'e}mentations GPU des algorithmes de filtrage}{19}{section.2.4}} +\citation{4287006} +\citation{6288187} +\citation{5402362} +\citation{chen09} +\citation{5402362} +\citation{aldinucci2012parallel} +\citation{5206542} +\citation{zheng2011performance} +\citation{PALHANOXAVIERDEFONTES} +\citation{nlmeansgpubelge} +\@writefile{toc}{\contentsline {section}{\numberline {2.5}Les techniques de segmentation}{21}{section.2.5}} +\citation{biblio-web} +\citation{otsu79} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.1}Analyse d'histogramme}{22}{subsection.2.5.1}} +\citation{slac-pub-0672} +\newlabel{fig-histo-cochon-a}{{2.8(a)}{23}{Subfigure 2 2.8(a)\relax }{subfigure.2.8.1}{}} +\newlabel{sub@fig-histo-cochon-a}{{(a)}{23}{Subfigure 2 2.8(a)\relax }{subfigure.2.8.1}{}} +\newlabel{fig-histo-cochon-b}{{2.8(b)}{23}{Subfigure 2 2.8(b)\relax }{subfigure.2.8.2}{}} +\newlabel{sub@fig-histo-cochon-b}{{(b)}{23}{Subfigure 2 2.8(b)\relax }{subfigure.2.8.2}{}} +\newlabel{fig-histo-cochon-c}{{2.8(c)}{23}{Subfigure 2 2.8(c)\relax }{subfigure.2.8.3}{}} +\newlabel{sub@fig-histo-cochon-c}{{(c)}{23}{Subfigure 2 2.8(c)\relax }{subfigure.2.8.3}{}} +\newlabel{fig-histo-cochon-d}{{2.8(d)}{23}{Subfigure 2 2.8(d)\relax }{subfigure.2.8.4}{}} +\newlabel{sub@fig-histo-cochon-d}{{(d)}{23}{Subfigure 2 2.8(d)\relax }{subfigure.2.8.4}{}} +\newlabel{fig-histo-cochon-e}{{2.8(e)}{23}{Subfigure 2 2.8(e)\relax }{subfigure.2.8.5}{}} +\newlabel{sub@fig-histo-cochon-e}{{(e)}{23}{Subfigure 2 2.8(e)\relax }{subfigure.2.8.5}{}} +\newlabel{fig-histo-cochon-f}{{2.8(f)}{23}{Subfigure 2 2.8(f)\relax }{subfigure.2.8.6}{}} +\newlabel{sub@fig-histo-cochon-f}{{(f)}{23}{Subfigure 2 2.8(f)\relax }{subfigure.2.8.6}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{23}{figure.2.8}} +\newlabel{fig-histo-cochon}{{2.8}{23}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation}{figure.2.8}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{23}{figure.2.8}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{23}{figure.2.8}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{23}{figure.2.8}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{23}{figure.2.8}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{23}{figure.2.8}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{23}{figure.2.8}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.2}Analyse de graphe}{23}{subsection.2.5.2}} +\citation{wulealy_1993} +\citation{cf-notes-x5} +\citation{sm-ncuts-pami2000} +\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces Calcul du seuil de s\IeC {\'e}paration des segments de l'histogramme.}}{24}{algocfline.1}} +\newlabel{algo-histo-cochon}{{1}{24}{Analyse d'histogramme\relax }{algocfline.1}{}} +\citation{kmeans-1965} +\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{25}{figure.2.9}} +\newlabel{fig-graph-cochon}{{2.9}{25}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 à 5}{figure.2.9}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{25}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{25}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{25}{figure.2.9}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{25}{figure.2.9}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.3}kernel-means, mean-shift et d\IeC {\'e}riv\IeC {\'e}s}{25}{subsection.2.5.3}} +\citation{k-centers} +\citation{k-medians} +\citation{x-means} +\citation{Lestimation-html} +\citation{meanshift_1995} +\citation{Computer-Graphics-by-Foley-van-Dam-Feiner-and-Hughes-published-by-Addison-Wesley-1990} +\citation{mean-shift-1999} +\citation{2002} +\citation{yket1999} +\@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{26}{figure.2.10}} +\newlabel{fig-kmeans-cochon}{{2.10}{26}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 à 5. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.10}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$s = 2$}}}{26}{figure.2.10}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$s = 3$}}}{26}{figure.2.10}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$s = 4$}}}{26}{figure.2.10}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$s = 5$}}}{26}{figure.2.10}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{27}{figure.2.11}} +\newlabel{fig-meanshift-cochon}{{2.11}{27}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 à 5. Le volume minimal admis pour un segment est fixé à 100 pixels. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments}{figure.2.11}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{27}{figure.2.11}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{27}{figure.2.11}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{27}{figure.2.11}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{27}{figure.2.11}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.4}Les contours actifs, ou \textit {snakes}}{27}{subsection.2.5.4}} +\citation{snake-kass-1988} +\citation{level-sets-osher-sethian-1988} +\citation{narrow-band-level-set} +\citation{fast_marching_sethian} +\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticti\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{28}{figure.2.12}} +\newlabel{fig-snake-tradi-cochon}{{2.12}{28}{Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les paramètres d'élastictié, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0.1 et 5. \relax }{figure.2.12}{}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{28}{figure.2.12}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{28}{figure.2.12}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{28}{figure.2.12}} +\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{28}{figure.2.12}} +\citation{cohenSMIE93} +\citation{ronfard} +\citation{snake-bertaux} +\citation{amfm-2010} +\citation{watershed} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.5}M\IeC {\'e}thodes hybrides}{29}{subsection.2.5.5}} +\@writefile{toc}{\contentsline {section}{\numberline {2.6}L'\IeC {\'e}tat de l'art des impl\IeC {\'e}mentations GPU}{29}{section.2.6}} +\@writefile{toc}{\contentsline {chapter}{\numberline {3}La segmentation orient\IeC {\'e}e r\IeC {\'e}gions dans les images bruit\IeC {\'e}es}{31}{chapter.3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {3.1}Pr\IeC {\'e}sentation - existant}{23}{section.3.1}} -\@writefile{toc}{\contentsline {section}{\numberline {3.2}La parall\IeC {\`e}lisation du snake polygonal}{23}{section.3.2}} -\@writefile{toc}{\contentsline {chapter}{\numberline {4}Le filtrage des images sur GPU}{25}{chapter.4}} +\@writefile{toc}{\contentsline {section}{\numberline {3.1}Pr\IeC {\'e}sentation - existant}{31}{section.3.1}} +\@writefile{toc}{\contentsline {section}{\numberline {3.2}La parall\IeC {\`e}lisation du snake polygonal}{31}{section.3.2}} +\@writefile{toc}{\contentsline {chapter}{\numberline {4}Le filtrage des images sur GPU}{33}{chapter.4}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {4.1}Algorithme de r\IeC {\'e}duction de bruit par recherche des lignes de niveaux}{25}{section.4.1}} -\@writefile{toc}{\contentsline {section}{\numberline {4.2}Filtre m\IeC {\'e}dian}{25}{section.4.2}} -\@writefile{toc}{\contentsline {section}{\numberline {4.3}Filtres de convolution}{25}{section.4.3}} -\bibdata{biblio.bib} -\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conclusion g\IeC {\'e}n\IeC {\'e}rale}{27}{chapter.5}} +\@writefile{toc}{\contentsline {section}{\numberline {4.1}Algorithme de r\IeC {\'e}duction de bruit par recherche des lignes de niveaux}{33}{section.4.1}} +\@writefile{toc}{\contentsline {section}{\numberline {4.2}Filtre m\IeC {\'e}dian}{33}{section.4.2}} +\@writefile{toc}{\contentsline {section}{\numberline {4.3}Filtres de convolution}{33}{section.4.3}} +\bibstyle{plain} +\bibdata{biblio} +\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conclusion g\IeC {\'e}n\IeC {\'e}rale}{35}{chapter.5}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} +\bibcite{kodakccd}{1} +\bibcite{aldinucci2012parallel}{2} +\bibcite{1467423}{3} +\bibcite{BuadesCM06}{4} +\bibcite{Caselles99topographicmaps}{5} +\bibcite{chen09}{6} +\bibcite{1093941}{7} +\bibcite{cutrona1990synthetic}{8} +\bibcite{Dabov06imagedenoising}{9} +\bibcite{Dabov09bm3dimage}{10} +\bibcite{Daubechies:1992:TLW:130655}{11} +\bibcite{elad2006image}{12} +\bibcite{nlmeansgpubelge}{13} +\bibcite{healey1994radiometric}{14} +\bibcite{5402362}{15} +\bibcite{cmla2009Kes}{16} +\bibcite{Mallat:2008:WTS:1525499}{17} +\bibcite{mancuso2001introduction}{18} +\bibcite{coil}{19} +\bibcite{PALHANOXAVIERDEFONTES}{20} +\bibcite{4287006}{21} +\bibcite{1521458}{22} +\bibcite{4587843}{23} +\bibcite{6288187}{24} +\bibcite{convolutionsoup}{25} +\bibcite{strang1999discrete}{26} +\bibcite{theuwissen2001ccd}{27} +\bibcite{710815}{28} +\bibcite{tukey77}{29} +\bibcite{Wang04imagequality}{30} +\bibcite{5206542}{31} +\bibcite{zheng2011performance}{32}