2 \item Boolean algebra on $\Bool=\{0,1\}$ with the classical operators: $.$,
3 $+$, $\overline{~}$, disjunctive union $\oplus$
4 \item For $n \in \Nats^*$, a {\emph{Boolean map}} $f$:
7 \Bool \rightarrow \Bool, x=(x_1,\dots,x_n)\mapsto f(x)=(f_1(x),\dots,f_n(x))
11 \item $s = \left(s_t\right)_{t \in \mathds{N}}$: sequence of indices in $\llbracket 1;n \rrbracket$ called ``strategy''.
12 \item At the $t^{th}$ iteration: only the $s_{t}-$th component is
16 x^{t+1}&=&F_f(s_t,x^t)\\
18 F_f& :& \llbracket1;n\rrbracket\times \Bool^{n} \rightarrow \Bool^n\\
19 F_f(i,x)&=&(x_1,\dots,x_{i-1},f_i(x),x_{i+1},\dots,x_n)