]> AND Private Git Repository - 16dcc.git/blob - evalPRNG/compareFonctionMixingTime.py
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
khkhj
[16dcc.git] / evalPRNG / compareFonctionMixingTime.py
1 import random as rn
2 import numpy as np 
3 from math import *
4 from optparse import OptionParser
5
6  
7 def bin(elem,n):
8     """Convertit un nombre en binaire"""
9     q = -1
10     res =[0 for i in range(n)]
11     i = 1
12     while q != 0:
13         q = elem // 2
14         r = elem % 2
15         res[n-i] =  r
16         elem = q
17         i+=1
18     return res
19
20 def dec(ch,n):
21     l = len(ch)
22     acc = 0
23     for i in range(l):
24         if ch[i]==1 :
25             acc = acc + 2**(n-i-1)        
26     return acc
27
28
29 def MarkovMatrixUnPas(fbin,n,p2n,lp2nm1):
30     print p2n
31     MM = np.zeros((p2n,p2n))
32     # diagonal
33     for i in lp2nm1 :
34         ib = bin(i,n)
35         MM[i,i] += 0.5
36         image = fbin[tuple(ib)]
37         for j in range(n):
38             ipb =[_ for _ in ib]
39             ipb[j] = image[j]
40             MM[i, dec(ipb,n)] +=float(1)/(2*n)
41     return MM
42 """
43
44 def MarkovMatrixUnPas(fbin,n,p2n,lp2nm1):
45     MM = np.zeros((p2n,p2n))
46     # diagonal
47     for i in lp2nm1 :
48         ib = bin(i,n)
49         #MM[i,i] += 0.5
50         image = fbin[tuple(ib)]
51         for j in range(n):
52             ipb =[_ for _ in ib]
53             ipb[j] = image[j]
54             MM[i, dec(ipb,n)] +=float(1)/(n)
55     return MM
56 """
57
58
59
60
61 def MarkovMatrixSaut(fbin,n,p2n,lp2nm1):
62     print p2n
63     MM = np.zeros((p2n,p2n))
64     # diagonal
65     for i in lp2nm1 :
66         ib = bin(i,n)
67         MM[i,i] += 0.5
68         image = fbin[tuple(ib)]
69         for j in lp2nm1:
70             st = bin(j,n)
71             ipb =[_ for _ in ib]
72             for k in range(n):
73                 if st[k] == 1 :
74                     ipb[k] = image[k]
75             MM[i, dec(ipb,n)] +=float(1)/(2*2**n)
76     return MM
77
78 """
79
80 def MarkovMatrixSaut(fbin,n,p2n,lp2nm1):
81     MM = np.zeros((p2n,p2n))
82     # diagonal
83     for i in lp2nm1 :
84         ib = bin(i,n)
85         #MM[i,i] += 0.5
86         image = fbin[tuple(ib)]
87         for j in lp2nm1:
88             st = bin(j,n)
89             ipb =[_ for _ in ib]
90             for k in range(n):
91                 if st[k] == 1 :
92                     ipb[k] = image[k]
93             MM[i, dec(ipb,n)] +=float(1)/(2**n)
94     return MM
95
96 """                
97
98     
99
100
101 ## n'est pas un circuit hmiltonien
102 lf= []
103 #lf +=[ [13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8]] #4
104 #lf += [[29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4]] #5
105 #lf +=  [[55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, 49, 15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, 40, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32]] #6
106 #lf+= [[47, 58, 57, 44, 51, 42, 41, 60, 63, 22, 37, 53, 19, 54, 48, 32, 45, 14, 13, 46, 11, 43, 33, 8, 7, 36, 39, 4, 34, 50, 1, 40, 29, 62, 61, 30, 59, 27, 17, 56, 55, 20, 23, 52, 18, 2, 49, 24, 31, 10, 9, 28, 3, 26, 25, 12, 15, 38, 21, 5, 35, 6, 0, 16]]
107
108 #lf += [[111, 94, 93, 116, 122, 90, 125, 88, 115, 126, 119, 84, 123, 98, 81, 120, 109, 106, 105, 110, 99, 107, 104, 72, 71, 118, 117, 96, 103, 102, 113, 64, 79, 86, 95, 124, 83, 91, 121, 24, 85, 22, 69, 20, 19, 114, 17, 112, 77, 76, 13, 108, 74, 10, 9, 73, 67, 66, 101, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, 56, 48, 53, 38, 37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34, 39, 52, 43, 50, 32, 36, 29, 28, 61, 92, 26, 18, 89, 25, 87, 30, 23, 4, 27, 2, 16, 80, 31, 78, 15, 14, 3, 11, 8, 12, 5, 70, 21, 68, 7, 6, 65, 1]] #7
109
110 lf += [[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180, 227, 178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, 229, 166, 165, 244, 163, 242, 241, 192, 215, 220, 205, 216, 218, 222, 221, 208, 213, 210, 212, 214, 219, 211, 217, 209, 239, 202, 207, 140, 139, 234, 193, 204, 135, 196, 199, 132, 194, 130, 225, 200, 159, 62, 185, 252, 59, 250, 169, 56, 191, 246, 245, 52, 243, 50, 176, 48, 173, 238, 189, 44, 235, 42, 137, 184, 231, 38, 37, 228, 35, 226, 177, 224, 151, 156, 141, 152, 154, 158, 157, 144, 149, 146, 148, 150, 155, 147, 153, 145, 175, 206, 143, 136, 11, 142, 129, 8, 7, 198, 197, 4, 195, 2, 161, 160, 255, 124, 109, 108, 122, 126, 125, 112, 117, 114, 116, 100, 123, 98, 97, 113, 79, 106, 111, 110, 99, 74, 121, 120, 71, 118, 103, 101, 115, 66, 65, 104, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 107, 78, 105, 64, 69, 102, 68, 70, 75, 67, 73, 96, 55, 58, 45, 188, 51, 186, 61, 40, 119, 182, 181, 53, 179, 54, 33, 49, 15, 174, 47, 60, 171, 46, 57, 32, 167, 6, 36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, 138, 41, 12, 39, 134, 133, 5, 131, 34, 9, 128]]#8 pas totally
111
112 lf +=[[223, 250, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180, 227, 178, 240, 248, 237, 236, 173, 172, 171, 238, 201, 168, 229, 166, 228, 244, 235, 242, 241, 192, 215, 220, 205, 216, 218, 222, 153, 152, 151, 210, 212, 214, 219, 146, 217, 209, 239, 142, 141, 206, 195, 234, 193, 136, 231, 196, 199, 197, 194, 226, 225, 200, 63, 188, 253, 252, 59, 190, 189, 176, 191, 246, 245, 164, 243, 162, 161, 177, 143, 170, 45, 44, 43, 138, 185, 184, 135, 38, 167, 165, 179, 34, 129, 224, 31, 154, 221, 158, 147, 26, 25, 156, 159, 22, 213, 149, 211, 150, 144, 208, 207, 14, 13, 204, 203, 202, 169, 8, 133, 198, 132, 4, 139, 131, 1, 160, 255, 124, 109, 108, 122, 126, 125, 112, 117, 114, 116, 100, 123, 98, 97, 113, 79, 106, 111, 110, 99, 74, 121, 120, 71, 118, 103, 101, 115, 66, 65, 104, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 107, 78, 105, 64, 69, 102, 68, 70, 75, 67, 73, 96, 55, 58, 57, 62, 51, 186, 41, 40, 119, 182, 181, 53, 35, 54, 48, 56, 175, 174, 61, 60, 11, 46, 9, 32, 37, 6, 36, 52, 163, 50, 49, 0, 23, 28, 157, 24, 155, 30, 29, 16, 21, 18, 20, 148, 27, 19, 145, 17, 47, 10, 15, 140, 3, 42, 137, 12, 39, 134, 7, 5, 2, 130, 33, 128]] #8 totally
113
114
115
116     
117
118 # 14 = (1,1,1,0) = f(0,0,0,0)
119 #  6 = (0,1,1,0) = f(0,0,0,1)
120 #....
121 # 8  = (1,0,0,0) = f(1,1,1,1)
122
123
124 def traite_f(f,dev):
125     n = int(log(len(f))/log(2))
126     #nbre d'elements
127     p2n = int(pow(2,n))
128     lp2nm1 = range(p2n)
129     # pour eviter de le calculer a chaque fois
130     # fbin est la fonction (representee comme un dico) 
131     # qui au tuple binaire (x3,x2,x1,x0) associe 
132     # le nombre f(x3,x2,x1,x0)
133     fbin={}
134     for j in range(len(f)):
135         fbin[tuple(bin(j,n))] = bin(f[j],n)
136
137     MM = MarkovMatrixUnPas(fbin,n,p2n,lp2nm1)
138     M = np.zeros((p2n,p2n))
139     np.copyto(M,MM)
140     
141     MMs = MarkovMatrixSaut(fbin,n,p2n,lp2nm1)
142     Ms = np.zeros((p2n,p2n))
143     np.copyto(Ms,MMs)
144     
145
146     
147     error = 1
148     cpt = 2
149     while error > dev :
150         M = np.dot(M,MM)
151         error =max([sqrt(sum([(M[i,j] - float(1)/p2n)**2  for i in range(p2n)])) for j in range(p2n)])
152         #print cpt, error, M
153         cpt +=1
154     
155
156     error = 1
157     cpts = 2
158     while error > dev :
159         if n==4 and cpts==2: 
160             print Ms
161         Ms = np.dot(Ms,MMs)
162         error =max([sqrt(sum([(Ms[i,j] - float(1)/p2n)**2  for i in range(p2n)])) for j in range(p2n)])
163         #print cpt, error, M
164         cpts +=1
165
166
167
168     return n, cpt-1, cpts-1
169
170
171 def get_treatedlist(rf):
172     treatedlist = []
173     fd = open(rf,"r")
174     ll = fd.readlines()
175     compteur = 0
176     for l in ll:
177         compteur +=1
178         # suppr [ et ]
179         #print compteur, l
180         
181         l = l[1:len(l)-3]
182         #print l
183         lkm = [x for x in l.split(", ")]
184         #print lkm
185         treatedlist.append([int(x) for x in lkm])
186     return treatedlist
187
188 def lcompare(l1,l2):
189     taille= len(l1)
190     cpt = 0
191     ok = True
192     while ok and cpt < taille:
193         if l1[cpt] == l2[cpt]:
194             cpt +=1
195         else:
196             ok=False
197     if ok :
198         return 0
199     else :
200         return cpt
201     
202         
203     
204
205
206 def main():
207     global lf
208     if rf != False:
209         lf =get_treatedlist(rf)
210     def compareMarche(x,y):
211         return cmp(x[1],y[1])
212     def compareSaute(x,y):
213         return cmp(x[2],y[2])
214
215     brut=[]
216     cpt = 0
217     for f in lf: 
218         dev = 1E-12
219         n,cptM,cptS = traite_f(f,dev)
220         brut +=[(f,cptM,cptS)]
221         """
222         print f, n,cptM,cptS
223         #print 8*n*n + 4*n*log(n+1)#,8*n*n + (n+2)*(log(n)+2)
224         #print "Pour "+str(n)+" bits et pour eps="+str(dev)+", appels a rand moy pr 1 bit genere.",
225         print cpt
226         cpt+=1
227         brut.sort(cmp=compareMarche)
228         f,cptM,cptS = brut[0]
229
230         print f
231         print "En marchant:", cptM, cptM*log(n)/(log(2)*n),
232         print "En sautant:", cptS
233
234         brut.sort(cmp=compareSaute)
235         fp,cptM,cptS = brut[0]
236         print fp 
237         print "En sautant:", cptS
238
239         cp = lcompare(f,fp)
240         if cp > 0:
241             print "diff",f[cp],fp[cp]
242         else :
243             print "egales"
244         """
245         print brut
246
247 rf = False
248 def options():
249     global rf
250     parser = OptionParser()
251     parser.add_option("-i", "--input", dest="i",
252                       help="file of sequences")
253     (options, args) = parser.parse_args()
254     if (options.i != None):
255         rf = options.i
256
257
258 if __name__ == "__main__":
259     options()
260     print "------"
261     main()
262