1 This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $
2 issued from an hypercube where an Hamiltonian path has been removed
3 as described in previous section.
4 Notice that the iteration graph is always a subgraph of
5 ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the
6 edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$.
7 Next, if we add probabilities on the transition graph, iterations can be
8 interpreted as Markov chains.
11 Let us consider for instance
12 the graph $\Gamma(f)$ defined
13 in \textsc{Figure~\ref{fig:iteration:f*}.} and
14 the probability function $p$ defined on the set of edges as follows:
18 = \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
19 = \frac{1}{6} \textrm{ otherwise.}
23 The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is
26 \begin{array}{llllllll}
41 A specific random walk in this modified hypercube is first
42 introduced (See section~\ref{sub:stop:formal}). We further
43 study this random walk in a theoretical way to
44 provide an upper bound of fair sequences
45 (See section~\ref{sub:stop:bound}).
46 We finally complete these study with experimental
47 results that reduce this bound (Sec.~\ref{sub:stop:exp}).
48 Notice that for a general references on Markov chains
49 see~\cite{LevinPeresWilmer2006},
50 and particularly Chapter~5 on stopping times.
53 \subsection{Formalizing the Random Walk}\label{sub:stop:formal}
55 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total
56 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
58 $$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that
59 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if
60 $\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has
61 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
63 Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the
64 distribution induced by the $X$-th row of $P$. If the Markov chain induced by
65 $P$ has a stationary distribution $\pi$, then we define
66 $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$
68 \ANNOT{incohérence de notation $X$ : entier ou dans $B^N$ ?}
71 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
73 Intuitively speaking, $t_{\rm mix}$ is a mixing time
74 \textit{i.e.}, is the time until the matrix $X$ \ANNOT{pas plutôt $P$ ?} of a Markov chain
75 is $\epsilon$-close to a stationary distribution.
81 $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
86 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
87 % un intérêt dans la preuve ensuite.}
92 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
93 % One can prove that \JFc{Ou cela a-t-il été fait?}
94 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
98 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random
99 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
100 time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
101 (\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
102 In other words, the event $\{\tau = t \}$ only depends on the values of
103 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
106 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
107 random mapping representation of the Markov chain. A {\it randomized
108 stopping time} for the Markov chain is a stopping time for
109 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
110 as stationary distribution, then a {\it stationary time} $\tau$ is a
111 randomized stopping time (possibly depending on the starting position $X$),
112 such that the distribution of $X_\tau$ is $\pi$:
113 $$\P_X(X_\tau=Y)=\pi(Y).$$
115 \subsection{Upper bound of Stopping Time}\label{sub:stop:bound}
118 A stopping time $\tau$ is a \emph{strong stationary time} if $X_{\tau}$ is
119 independent of $\tau$.
122 \begin{thrm}\label{thm-sst}
123 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
128 %Let $\Bool^n$ be the set of words of length $n$.
130 X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
131 In other words, $E$ is the set of all the edges in the classical
133 Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$.
134 Intuitively speaking $h$ aims at memorizing for each node
135 $X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle,
136 \textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$
141 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
142 0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube,
143 \textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$
146 We define the Markov matrix $P_h$ for each line $X$ and
147 each column $Y$ as follows:
151 P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\
152 P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\
153 P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
156 \label{eq:Markov:rairo}
159 We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function
160 such that for any $X \in \Bool^{\mathsf{N}} $,
161 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$.
162 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
163 $\ov{h}(\ov{h}(X))\neq X$.
165 \begin{lmm}\label{lm:h}
166 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
170 Let $\ov{h}$ be bijective.
171 Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
172 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and
173 $\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$.
174 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
175 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and
176 $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$.
177 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
178 This contradicts the square-freeness of $\ov{h}$.
181 Let $Z$ be a random variable that is uniformly distributed over
182 $\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$.
183 For $X\in \Bool^{\mathsf{N}}$, we
184 define, with $Z=(i,b)$,
188 f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
189 f(X,Z)=X& \text{otherwise.}
193 The Markov chain is thus defined as
200 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
201 %\section{Stopping time}
203 An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair}
205 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
206 In other words, there exist a date $j$ before $t$ where
207 the first element of the random variable $Z$ is exactly $l$
208 (\textit{i.e.}, $l$ is the strategy at date $j$)
209 and where the configuration $X_j$ allows to traverse the edge $l$.
211 Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$
212 are fair. The integer $\ts$ is a randomized stopping time for
213 the Markov chain $(X_t)$.
217 The integer $\ts$ is a strong stationary time.
221 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
222 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
224 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
225 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
226 bit of $X_{\tau_\ell}$
227 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
228 This probability is independent of the value of the other bits.
232 Moving next in the chain, at each step,
233 the $l$-th bit is switched from $0$ to $1$ or from $1$ to $0$ each time with
234 the same probability. Therefore, for $t\geq \tau_\ell$, the
235 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
238 \begin{thrm} \label{prop:stop}
239 If $\ov{h}$ is bijective and square-free, then
240 $E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$.
243 For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$,
244 let $S_{X,\ell}$ be the
245 random variable that counts the number of steps
246 from $X$ until we reach a configuration where
247 $\ell$ is fair. More formally
248 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
251 % $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
254 \begin{lmm}\label{prop:lambda}
255 Let $\ov{h}$ is a square-free bijective function. Then
259 $E[S_{X,\ell}]\leq 8{\mathsf{N}}^2$ is established.
263 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
264 \frac{1}{4{\mathsf{N}}^2}$.
268 \item if $h(X)\neq \ell$, then
269 $\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$.
270 \item otherwise, $h(X)=\ell$, then
271 $\P(S_{X,\ell}=1)=0$.
272 But in this case, intuitively, it is possible to move
273 from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
274 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched.
276 since $\ov{h}$ is square-free,
277 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
278 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
279 $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h},
280 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
281 X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq
282 \frac{1}{4{\mathsf{N}}^2}$.
288 Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one
289 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
290 \left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$.
292 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
293 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
294 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
295 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
296 \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
298 $$E[S_{X,\ell}]\leq 1+1+2
299 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$
300 which concludes the proof.
303 Let $\ts^\prime$ be the time used to get all the bits but one fair.
305 \begin{lmm}\label{lm:stopprime}
306 One has $E[\ts^\prime]\leq 4{\mathsf{N}} \ln ({\mathsf{N}}+1).$
310 This is a classical Coupon Collector's like problem. Let $W_i$ be the
311 random variable counting the number of moves done in the Markov chain while
312 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$.
313 But when we are at position $X$ with $i-1$ fair bits, the probability of
314 obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair,
315 or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair.
318 $\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
319 Consequently, we have $\P(W_i\geq k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}-i+1}.$
320 It follows that $E[W_i]=\sum_{k=1}^{+\infty} \P (W_i\geq k)\leq {\mathsf{N}} \frac{{\mathsf{N}}-i+2}{({\mathsf{N}}-i+1)^2}\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$.
325 $E[W_i]\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore
326 $$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq
327 4{\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{{\mathsf{N}}-i+2}=
328 4{\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$
330 But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that
331 $1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$
334 4{\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq
335 4{\mathsf{N}}\ln({\mathsf{N}}+1)$.
338 One can now prove Theorem~\ref{prop:stop}.
341 Since $\ts^\prime$ is the time used to obtain $\mathsf{N}-1$ fair bits.
342 Assume that the last unfair bit is $\ell$. One has
343 $\ts=\ts^\prime+S_{X_\tau,\ell}$, and therefore $E[\ts] =
344 E[\ts^\prime]+E[S_{X_\tau,\ell}]$. Therefore, Theorem~\ref{prop:stop} is a
345 direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
348 Now using Markov Inequality, one has $\P_X(\tau > t)\leq \frac{E[\tau]}{t}$.
349 With $t=32N^2+16N\ln (N+1)$, one obtains: $\P_X(\tau > t)\leq \frac{1}{4}$.
350 Therefore, using the defintion of $t_{\rm mix)}$ and
351 Theorem~\ref{thm-sst}, it follows that
352 $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
355 Notice that the calculus of the stationary time upper bound is obtained
356 under the following constraint: for each vertex in the $\mathsf{N}$-cube
357 there are one ongoing arc and one outgoing arc that are removed.
358 The calculus does not consider (balanced) Hamiltonian cycles, which
359 are more regular and more binding than this constraint.
361 is obtained using Markov Inequality which is frequently coarse. For the
362 classical random walkin the $\mathsf{N}$-cube, without removing any
363 Hamiltonian cylce, the mixing time is in $\Theta(N\ln N)$.
364 We conjecture that in our context, the mixing time is also in $\Theta(N\ln
368 In this later context, we claim that the upper bound for the stopping time
369 should be reduced. This fact is studied in the next section.
371 \subsection{Practical Evaluation of Stopping Times}\label{sub:stop:exp}
373 Let be given a function $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$
374 and an initial seed $x^0$.
375 The pseudo code given in algorithm~\ref{algo:stop} returns the smallest
376 number of iterations such that all elements $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ are fair. It allows to deduce an approximation of $E[\ts]$
377 by calling this code many times with many instances of function and many
380 \begin{algorithm}[ht]
382 \KwIn{a function $f$, an initial configuration $x^0$ ($\mathsf{N}$ bits)}
383 \KwOut{a number of iterations $\textit{nbit}$}
385 $\textit{nbit} \leftarrow 0$\;
387 $\textit{fair}\leftarrow\emptyset$\;
388 \While{$\left\vert{\textit{fair}}\right\vert < \mathsf{N} $}
390 $ s \leftarrow \textit{Random}(\mathsf{N})$ \;
391 $\textit{image} \leftarrow f(x) $\;
392 \If{$\textit{Random}(1) \neq 0$ and $x[s] \neq \textit{image}[s]$}{
393 $\textit{fair} \leftarrow \textit{fair} \cup \{s\}$\;
394 $x[s] \leftarrow \textit{image}[s]$\;
396 $\textit{nbit} \leftarrow \textit{nbit}+1$\;
398 \Return{$\textit{nbit}$}\;
400 \caption{Pseudo Code of stoping time calculus }
404 Practically speaking, for each number $\mathsf{N}$, $ 3 \le \mathsf{N} \le 16$,
405 10 functions have been generated according to method presented in section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
406 is executed 10000 times with a random seed. The Figure~\ref{fig:stopping:moy}
407 summarizes these results. In this one, a circle represents the
408 approximation of $E[\ts]$ for a given $\mathsf{N}$.
409 The line is the graph of the function $x \mapsto 2x\ln(2x+8)$.
411 be observed that the approximation is largely
412 smaller than the upper bound given in theorem~\ref{prop:stop}.
413 It can be further deduced that the conjecture of the previous section
414 is realistic according the graph of $x \mapsto 2x\ln(2x+8)$.
422 % \begin{array}{|*{14}{l|}}
424 % \mathsf{N} & 4 & 5 & 6 & 7& 8 & 9 & 10& 11 & 12 & 13 & 14 & 15 & 16 \\
426 % \mathsf{N} & 21.8 & 28.4 & 35.4 & 42.5 & 50 & 57.7 & 65.6& 73.5 & 81.6 & 90 & 98.3 & 107.1 & 16 \\
430 % \caption{Average Stopping Time}\label{table:stopping:moy}
435 \includegraphics[scale=0.5]{complexity}
436 \caption{Average Stopping Time Approximation}\label{fig:stopping:moy}
443 %%% TeX-master: "main"
444 %%% ispell-dictionary: "american"