1 Let us finally present the pseudorandom number generator $\chi_{\textit{16HamG}}$,
2 which is based on random walks in $\Gamma_{\{b\}}(f)$.
3 More precisely, let be given a Boolean map $f:\Bool^{\mathsf{N}} \rightarrow
5 a PRNG \textit{Random},
6 an integer $b$ that corresponds to an iteration number (\textit{i.e.}, the length of the walk), and
7 an initial configuration $x^0$.
8 Starting from $x^0$, the algorithm repeats $b$ times
9 a random choice of which edge to follow, and traverses this edge
10 provided it is allowed to do so, \textit{i.e.},
11 when $\textit{Random}(1)$ is not null.
12 The final configuration is thus outputted.
13 This PRNG is formalized in Algorithm~\ref{CI Algorithm:2}.
19 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ ($\mathsf{N}$ bits)}
20 \KwOut{a configuration $x$ ($\mathsf{N}$ bits)}
24 \If{$\textit{Random}(1) \neq 0$}{
25 $s^0\leftarrow{\textit{Random}(\mathsf{N})}$\;
26 $x\leftarrow{F_f(x,s^0)}$\;
31 \caption{Pseudo Code of the $\chi_{\textit{16HamG}}$ PRNG}
32 \label{CI Algorithm:2}
36 This PRNG is slightly different from $\chi_{\textit{14Secrypt}}$
37 recalled in Algorithm~\ref{CI Algorithm}.
38 As this latter, the length of the random
39 walk of our algorithm is always constant (and is equal to $b$).
40 However, in the current version, we add the constraint that
41 the probability to execute the function $F_f$ is equal to 0.5 since
42 the output of $\textit{Random(1)}$ is uniform in $\{0,1\}$.
43 This constraint is added to match the theoretical framework of
44 Sect.~\ref{sec:hypercube}.
48 Notice that the chaos property of $G_f$ given in Sect.\ref{sec:proofOfChaos}
49 only requires that the graph $\Gamma_{\{b\}}(f)$ is strongly connected.
50 Since the $\chi_{\textit{16HamG}}$ algorithm
51 only adds probability constraints on existing edges,
52 it preserves this property.
55 For each number $\mathsf{N}=4,5,6,7,8$ of bits, we have generated
56 the functions according to the method
57 given in Sect.~\ref{sec:SCCfunc} and~\ref{sec:hamilton}.
58 % MENTION FILTRAGE POSSIBLE LORS DE CONSTRUCTION... (SCV)
59 For each $\mathsf{N}$, we have then restricted this evaluation to the function
60 whose Markov Matrix (issued from Eq.~(\ref{eq:Markov:rairo}))
61 has the smallest practical mixing time.
63 given in Table~\ref{table:nc}.
64 In this table, let us consider for instance
65 the function $\textcircled{a}$ from $\Bool^4$ to $\Bool^4$
66 defined by the following images :
67 $[13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8]$.
68 In other words, the image of $3~(0011)$ by $\textcircled{a}$ is $14~(1110)$:
69 it is obtained as the binary value of the fourth element in
70 the second list (namely~14).
72 In this table the column that is labeled with $b$ %(respectively by $E[\tau]$)
73 gives the practical mixing time
74 where the deviation to the standard distribution is lesser than $10^{-6}$.
75 %(resp. the theoretical upper bound of stopping time as described in Sect.~\ref{sec:hypercube}).
82 \begin{tabular}{|c|c|c|c|}
84 Function $f$ & $f(x)$, for $x$ in $(0,1,2,\hdots,2^n-1)$ & $\mathsf{N}$ & $b$
88 $\textcircled{a}$&[13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8]&4&64\\
92 [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, 17, & 5 & 78 \\
94 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4]
99 [55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, 49,
102 15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, 40, 63,
105 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13,
108 12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32]
113 [111, 124, 93, 120, 122, 114, 89, 121, 87, 126, 125, 84, 123, 82,
115 &112, 80, 79, 106, 105, 110, 75, 107, 73, 108, 119, 100, 117, 116,
117 &103, 102, 101, 97, 31, 86, 95, 94, 83, 26, 88, 24, 71, 118, 69,
119 &68, 115, 90, 113, 16, 15, 76, 109, 72, 74, 10, 9, 104, 7, 6, 65,
121 $\textcircled{d}$ &70, 99, 98, 64, 96, 127, 54, 53, 62, 51, 59, 56, 60, 39, 52, 37, &7 &99\\
122 &36, 55, 58, 57, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34, 33,
124 &38, 43, 50, 32, 48, 29, 28, 61, 92, 91, 18, 17, 25, 19, 30, 85,
126 &22, 27, 2, 81, 0, 13, 78, 77, 14, 3, 11, 8, 12, 23, 4, 21, 20,
135 [223, 238, 249, 254, 243, 251, 233, 252, 183, 244, 229, 245, 227,
137 &246, 240, 176, 175, 174, 253, 204, 203, 170, 169, 248, 247, 226,
139 &228, 164, 163, 162, 161, 192, 215, 220, 205, 216, 155, 222, 221,
141 &208, 213, 150, 212, 214, 219, 211, 145, 209, 239, 202, 207, 140,
143 &195, 234, 193, 136, 231, 230, 199, 197, 131, 198, 225, 200, 63,
145 &188, 173, 184, 186, 250, 57, 168, 191, 178, 180, 52, 187, 242,
147 &241, 48, 143, 46, 237, 236, 235, 138, 185, 232, 135, 38, 181, 165,
149 &35, 166, 33, 224, 31, 30, 153, 158, 147, 218, 217, 156, 159, 148,
151 $\textcircled{e}$&151, 149, 19, 210, 144, 152, 141, 206, 13, 12, 171, 10, 201, 128,
153 &133, 130, 132, 196, 3, 194, 137, 0, 255, 124, 109, 120, 122, 106,
155 &125, 104, 103, 114, 116, 118, 123, 98, 97, 113, 79, 126, 111, 110,
157 &99, 74, 121, 72, 71, 70, 117, 101, 115, 102, 65, 112, 127, 90, 89,
159 &94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93,
161 &108, 107, 78, 105, 64, 69, 66, 68, 100, 75, 67, 73, 96, 55, 190,
163 &189, 62, 51, 59, 41, 60, 119, 182, 37, 53, 179, 54, 177, 32, 45,
165 &44, 61, 172, 11, 58, 9, 56, 167, 34, 36, 4, 43, 50, 49, 160, 23,
167 &28, 157, 24, 26, 154, 29, 16, 21, 18, 20, 22, 27, 146, 25, 17, 47,
169 &142, 15, 14, 139, 42, 1, 40, 39, 134, 7, 5, 2, 6, 129, 8]
175 \caption{Functions with DSCC Matrix and smallest MT\label{table:nc}}
180 Let us first discuss about results against the NIST test suite.
181 In our experiments, 100 sequences (s = 100) of 1,000,000 bits are generated and tested.
182 If the value $\mathbb{P}_T$ of any test is smaller than 0.0001, the sequences are considered to be not good enough
183 and the generator is unsuitable.
185 Table~\ref{The passing rate} shows $\mathbb{P}_T$ of sequences based
186 on $\chi_{\textit{16HamG}}$ using different functions, namely
187 $\textcircled{a}$,\ldots, $\textcircled{e}$.
188 In this algorithm implementation,
189 the embedded PRNG \textit{Random} is the default Python PRNG, \textit{i.e.},
190 the Mersenne Twister Algorithm~\cite{matsumoto1998mersenne}.
191 Implementations for $\mathsf{N}=4, \dots, 8$ of this algorithm is evaluated
192 through the NIST test suite and results are given in columns
193 $\textit{MT}_4$, \ldots, $\textit{MT}_8$.
194 If there are at least two statistical values in a test, this test is
195 marked with an asterisk and the average value is computed to characterize the statistics.
197 We first can see in Table \ref{The passing rate} that all the rates
198 are greater than 97/100, \textit{i.e.}, all the generators
199 achieve to pass the NIST battery of tests.
200 It can be noticed that adding chaos properties for Mersenne Twister
201 algorithm does not reduce its security aginst this statistical tests.
205 \renewcommand{\arraystretch}{1.3}
208 \setlength{\tabcolsep}{2pt}
211 % \begin{tabular}{|l|l|l|l|l|l|}
213 % Method &$\textcircled{a}$& $\textcircled{b}$ & $\textcircled{c}$ & $\textcircled{d}$ & $\textcircled{e}$ \\ \hline\hline
214 % Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline
215 % Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline
216 % Frequency within a Block& 0.262 (0.98)& 0.699 (0.98)& 0.867 (0.99)& 0.145 (1.0)& 0.455 (0.99)\\ \hline
217 % Cumulative Sums (Cusum) *& 0.301 (0.98)& 0.521 (0.99)& 0.688 (0.99)& 0.888 (1.0)& 0.598 (1.0)\\ \hline
218 % Runs& 0.224 (0.97)& 0.383 (0.97)& 0.108 (0.96)& 0.213 (0.99)& 0.616 (0.99)\\ \hline
219 % Longest Run of 1s & 0.383 (1.0)& 0.474 (1.0)& 0.983 (0.99)& 0.699 (0.98)& 0.897 (0.96)\\ \hline
220 % Binary Matrix Rank& 0.213 (1.0)& 0.867 (0.99)& 0.494 (0.98)& 0.162 (0.99)& 0.924 (0.99)\\ \hline
221 % Disc. Fourier Transf. (Spect.)& 0.474 (1.0)& 0.739 (0.99)& 0.012 (1.0)& 0.678 (0.98)& 0.437 (0.99)\\ \hline
222 % Unoverlapping Templ. Match.*& 0.505 (0.990)& 0.521 (0.990)& 0.510 (0.989)& 0.511 (0.990)& 0.499 (0.990)\\ \hline
223 % Overlapping Temp. Match.& 0.574 (0.98)& 0.304 (0.99)& 0.437 (0.97)& 0.759 (0.98)& 0.275 (0.99)\\ \hline
224 % Maurer's Universal Statistical& 0.759 (0.96)& 0.699 (0.97)& 0.191 (0.98)& 0.699 (1.0)& 0.798 (0.97)\\ \hline
225 % Approximate Entropy (m=10)& 0.759 (0.99)& 0.162 (0.99)& 0.867 (0.99)& 0.534 (1.0)& 0.616 (0.99)\\ \hline
226 % Random Excursions *& 0.666 (0.994)& 0.410 (0.962)& 0.287 (0.998)& 0.365 (0.994)& 0.480 (0.985)\\ \hline
227 % Random Excursions Variant *& 0.337 (0.988)& 0.519 (0.984)& 0.549 (0.994)& 0.225 (0.995)& 0.533 (0.993)\\ \hline
228 % Serial* (m=10)& 0.630 (0.99)& 0.529 (0.99)& 0.460 (0.99)& 0.302 (0.995)& 0.360 (0.985)\\ \hline
229 % Linear Complexity& 0.719 (1.0)& 0.739 (0.99)& 0.759 (0.98)& 0.122 (0.97)& 0.514 (0.99)\\ \hline
230 \begin{tabular}{|l|r|r|r|r|r||r|r|r|r|r|}
232 Test & $\textit{MT}_4$ & $\textit{MT}_5$& $\textit{MT}_6$& $\textit{MT}_7$& $\textit{MT}_8$
233 &$\textcircled{a}$& $\textcircled{b}$ & $\textcircled{c}$ & $\textcircled{d}$ & $\textcircled{e}$ \\ \hline
234 Frequency (Monobit)& 0.924 (1.0)& 0.678 (0.98)& 0.102 (0.97)& 0.213 (0.98)& 0.719 (0.99)& 0.129 (1.0)& 0.181 (1.0)& 0.637 (0.99)& 0.935 (1.0)& 0.978 (1.0)\\ \hline
235 Frequency within a Block& 0.514 (1.0)& 0.419 (0.98)& 0.129 (0.98)& 0.275 (0.99)& 0.455 (0.99)& 0.275 (1.0)& 0.534 (0.98)& 0.066 (1.0)& 0.719 (1.0)& 0.366 (1.0)\\ \hline
236 Cumulative Sums (Cusum) *& 0.668 (1.0)& 0.568 (0.99)& 0.881 (0.98)& 0.529 (0.98)& 0.657 (0.995)& 0.695 (1.0)& 0.540 (1.0)& 0.514 (0.985)& 0.773 (0.995)& 0.506 (0.99)\\ \hline
237 Runs& 0.494 (0.99)& 0.595 (0.97)& 0.071 (0.97)& 0.017 (1.0)& 0.834 (1.0)& 0.897 (0.99)& 0.051 (1.0)& 0.102 (0.98)& 0.616 (0.99)& 0.191 (1.0)\\ \hline
238 Longest Run of Ones in a Block& 0.366 (0.99)& 0.554 (1.0)& 0.042 (0.99)& 0.051 (0.99)& 0.897 (0.97)& 0.851 (1.0)& 0.595 (0.99)& 0.419 (0.98)& 0.616 (0.98)& 0.897 (1.0)\\ \hline
239 Binary Matrix Rank& 0.275 (0.98)& 0.494 (0.99)& 0.719 (1.0)& 0.334 (0.98)& 0.637 (0.99)& 0.419 (1.0)& 0.946 (0.99)& 0.319 (0.99)& 0.739 (0.97)& 0.366 (1.0)\\ \hline
240 Discrete Fourier Transform (Spectral)& 0.122 (0.98)& 0.108 (0.99)& 0.108 (1.0)& 0.514 (0.99)& 0.534 (0.98)& 0.867 (1.0)& 0.514 (1.0)& 0.145 (1.0)& 0.224 (0.99)& 0.304 (1.0)\\ \hline
241 Non-overlapping Template Matching*& 0.483 (0.990)& 0.507 (0.990)& 0.520 (0.988)& 0.494 (0.988)& 0.515 (0.989)& 0.542 (0.990)& 0.512 (0.989)& 0.505 (0.990)& 0.494 (0.989)& 0.493 (0.991)\\ \hline
242 Overlapping Template Matching& 0.595 (0.99)& 0.759 (1.0)& 0.637 (1.0)& 0.554 (0.99)& 0.236 (1.0)& 0.275 (0.99)& 0.080 (0.99)& 0.574 (0.98)& 0.798 (0.99)& 0.834 (0.99)\\ \hline
243 Maurer's "Universal Statistical"& 0.202 (0.99)& 0.000 (0.99)& 0.514 (0.98)& 0.883 (0.97)& 0.366 (0.99)& 0.383 (0.99)& 0.991 (0.98)& 0.851 (1.0)& 0.595 (0.98)& 0.514 (1.0)\\ \hline
244 Approximate Entropy (m=10)& 0.616 (0.99)& 0.145 (0.99)& 0.455 (0.99)& 0.262 (0.97)& 0.494 (1.0)& 0.935 (1.0)& 0.719 (1.0)& 0.883 (1.0)& 0.719 (0.97)& 0.366 (0.99)\\ \hline
245 Random Excursions *& 0.275 (1.0)& 0.495 (0.975)& 0.465 (0.979)& 0.452 (0.991)& 0.260 (0.989)& 0.396 (0.991)& 0.217 (0.989)& 0.445 (0.975)& 0.743 (0.993)& 0.380 (0.990)\\ \hline
246 Random Excursions Variant *& 0.382 (0.995)& 0.400 (0.994)& 0.417 (0.984)& 0.456 (0.991)& 0.389 (0.991)& 0.486 (0.997)& 0.373 (0.981)& 0.415 (0.994)& 0.424 (0.991)& 0.380 (0.991)\\ \hline
247 Serial* (m=10)& 0.629 (0.99)& 0.963 (0.99)& 0.366 (0.995)& 0.537 (0.985)& 0.253 (0.995)& 0.350 (1.0)& 0.678 (0.995)& 0.287 (0.995)& 0.740 (0.99)& 0.301 (0.98)\\ \hline
248 Linear Complexity& 0.494 (0.99)& 0.514 (0.98)& 0.145 (1.0)& 0.657 (0.98)& 0.145 (0.99)& 0.455 (0.99)& 0.867 (1.0)& 0.401 (0.99)& 0.191 (0.97)& 0.699 (1.0)\\ \hline
252 \caption{NIST SP 800-22 test results ($\mathbb{P}_T$)}
253 \label{The passing rate}
259 %%% TeX-master: "main"
260 %%% ispell-dictionary: "american"