1 This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $
2 issued from an hypercube where an Hamiltonian path has been removed
3 as described in previous section.
4 Notice that the iteration graph is always a subgraph of
5 ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the
6 edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$.
7 Next, if we add probabilities on the transition graph, iterations can be
8 interpreted as Markov chains.
11 Let us consider for instance
12 the graph $\Gamma(f)$ defined
13 in \textsc{Figure~\ref{fig:iteration:f*}.} and
14 the probability function $p$ defined on the set of edges as follows:
18 = \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
19 = \frac{1}{6} \textrm{ otherwise.}
23 The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is
26 \begin{array}{llllllll}
41 A specific random walk in this modified hypercube is first
42 introduced (See section~\ref{sub:stop:formal}). We further
43 study this random walk in a theoretical way to
44 provide an upper bound of fair sequences
45 (See section~\ref{sub:stop:bound}).
46 We finally complete these study with experimental
47 results that reduce this bound (Sec.~\ref{sub:stop:exp}).
48 Notice that for a general references on Markov chains
49 see~\cite{LevinPeresWilmer2006},
50 and particularly Chapter~5 on stopping times.
53 \subsection{Formalizing the Random Walk}\label{sub:stop:formal}
55 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total
56 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
58 $$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that
59 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if
60 $\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has
61 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
63 Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the
64 distribution induced by the $X$-th row of $P$. If the Markov chain induced by
65 $P$ has a stationary distribution $\pi$, then we define
66 $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$
70 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
72 Intuitively speaking, $t_{\rm mix}$ is a mixing time
73 \textit{i.e.}, is the time until the matrix $X$ of a Markov chain
74 is $\epsilon$-close to a stationary distribution.
80 $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
85 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
86 % un intérêt dans la preuve ensuite.}
91 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
92 % One can prove that \JFc{Ou cela a-t-il été fait?}
93 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
97 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random
98 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
99 time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
100 (\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
101 In other words, the event $\{\tau = t \}$ only depends on the values of
102 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
105 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
106 random mapping representation of the Markov chain. A {\it randomized
107 stopping time} for the Markov chain is a stopping time for
108 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
109 as stationary distribution, then a {\it stationary time} $\tau$ is a
110 randomized stopping time (possibly depending on the starting position $X$),
111 such that the distribution of $X_\tau$ is $\pi$:
112 $$\P_X(X_\tau=Y)=\pi(Y).$$
114 \subsection{Upper bound of Stopping Time}\label{sub:stop:bound}
117 A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
118 independent of $\tau$.
121 \begin{thrm}\label{thm-sst}
122 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
127 %Let $\Bool^n$ be the set of words of length $n$.
129 X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
130 In other words, $E$ is the set of all the edges in the classical
132 Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$.
133 Intuitively speaking $h$ aims at memorizing for each node
134 $X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle,
135 \textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$
140 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
141 0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube,
142 \textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$
145 We define the Markov matrix $P_h$ for each line $X$ and
146 each column $Y$ as follows:
150 P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\
151 P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\
152 P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
155 \label{eq:Markov:rairo}
158 We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function
159 such that for any $X \in \Bool^{\mathsf{N}} $,
160 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$.
161 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
162 $\ov{h}(\ov{h}(X))\neq X$.
164 \begin{lmm}\label{lm:h}
165 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
169 Let $\ov{h}$ be bijective.
170 Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
171 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and
172 $\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$.
173 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
174 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and
175 $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$.
176 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
177 This contradicts the square-freeness of $\ov{h}$.
180 Let $Z$ be a random variable that is uniformly distributed over
181 $\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$.
182 For $X\in \Bool^{\mathsf{N}}$, we
183 define, with $Z=(i,b)$,
187 f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
188 f(X,Z)=X& \text{otherwise.}
192 The Markov chain is thus defined as
199 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
200 %\section{Stopping time}
202 An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair}
204 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
205 In other words, there exist a date $j$ before $t$ where
206 the first element of the random variable $Z$ is exactly $l$
207 (\textit{i.e.}, $l$ is the strategy at date $j$)
208 and where the configuration $X_j$ allows to traverse the edge $l$.
210 Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$
211 are fair. The integer $\ts$ is a randomized stopping time for
212 the Markov chain $(X_t)$.
216 The integer $\ts$ is a strong stationary time.
220 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
221 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
223 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
224 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
225 bit of $X_{\tau_\ell}$
226 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
227 This probability is independent of the value of the other bits.
231 Moving next in the chain, at each step,
232 the $l$-th bit is switched from $0$ to $1$ or from $1$ to $0$ each time with
233 the same probability. Therefore, for $t\geq \tau_\ell$, the
234 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
237 \begin{thrm} \label{prop:stop}
238 If $\ov{h}$ is bijective and square-free, then
239 $E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$.
242 For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$,
243 let $S_{X,\ell}$ be the
244 random variable that counts the number of steps
245 from $X$ until we reach a configuration where
246 $\ell$ is fair. More formally
247 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
250 % $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
253 \begin{lmm}\label{prop:lambda}
254 Let $\ov{h}$ is a square-free bijective function. Then
258 $E[S_{X,\ell}]\leq 8{\mathsf{N}}^2$ is established.
262 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
263 \frac{1}{4{\mathsf{N}}^2}$.
267 \item if $h(X)\neq \ell$, then
268 $\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$.
269 \item otherwise, $h(X)=\ell$, then
270 $\P(S_{X,\ell}=1)=0$.
271 But in this case, intuitively, it is possible to move
272 from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
273 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched.
275 since $\ov{h}$ is square-free,
276 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
277 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
278 $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h},
279 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
280 X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq
281 \frac{1}{4{\mathsf{N}}^2}$.
287 Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one
288 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
289 \left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$.
291 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
292 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
293 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
294 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
295 \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
297 $$E[S_{X,\ell}]\leq 1+1+2
298 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$
299 which concludes the proof.
302 Let $\ts^\prime$ be the time used to get all the bits but one fair.
304 \begin{lmm}\label{lm:stopprime}
305 One has $E[\ts^\prime]\leq 4{\mathsf{N}} \ln ({\mathsf{N}}+1).$
309 This is a classical Coupon Collector's like problem. Let $W_i$ be the
310 random variable counting the number of moves done in the Markov chain while
311 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$.
312 But when we are at position $X$ with $i-1$ fair bits, the probability of
313 obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair,
314 or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair.
317 $\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
318 Consequently, we have $\P(W_i\geq k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}-i+1}.$
319 It follows that $E[W_i]=\sum_{k=1}^{+\infty} \P (W_i\geq k)\leq {\mathsf{N}} \frac{{\mathsf{N}}-i+2}{({\mathsf{N}}-i+1)^2}\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$.
324 $E[W_i]\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore
325 $$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq
326 4{\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{{\mathsf{N}}-i+2}=
327 4{\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$
329 But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that
330 $1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$
333 4{\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq
334 4{\mathsf{N}}\ln({\mathsf{N}}+1)$.
337 One can now prove Theorem~\ref{prop:stop}.
340 Since $\ts^\prime$ is the time used to obtain $\mathsf{N}-1$ fair bits.
341 Assume that the last unfair bit is $\ell$. One has
342 $\ts=\ts^\prime+S_{X_\tau,\ell}$, and therefore $E[\ts] =
343 E[\ts^\prime]+E[S_{X_\tau,\ell}]$. Therefore, Theorem~\ref{prop:stop} is a
344 direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
347 Now using Markov Inequality, one has $\P_X(\tau > t)\leq \frac{E[\tau]}{t}$.
348 With $t=32N^2+16N\ln (N+1)$, one obtains: $\P_X(\tau > t)\leq \frac{1}{4}$.
349 Therefore, using the defintion of $t_{\rm mix)}$ and
350 Theorem~\ref{thm-sst}, it follows that
351 $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
354 Notice that the calculus of the stationary time upper bound is obtained
355 under the following constraint: for each vertex in the $\mathsf{N}$-cube
356 there are one ongoing arc and one outgoing arc that are removed.
357 The calculus does not consider (balanced) Hamiltonian cycles, which
358 are more regular and more binding than this constraint.
360 is obtained using Markov Inequality which is frequently coarse. For the
361 classical random walkin the $\mathsf{N}$-cube, without removing any
362 Hamiltonian cylce, the mixing time is in $\Theta(N\ln N)$.
363 We conjecture that in our context, the mixing time is also in $\Theta(N\ln
367 In this later context, we claim that the upper bound for the stopping time
368 should be reduced. This fact is studied in the next section.
370 \subsection{Practical Evaluation of Stopping Times}\label{sub:stop:exp}
372 Let be given a function $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$
373 and an initial seed $x^0$.
374 The pseudo code given in algorithm~\ref{algo:stop} returns the smallest
375 number of iterations such that all elements $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ are fair. It allows to deduce an approximation of $E[\ts]$
376 by calling this code many times with many instances of function and many
379 \begin{algorithm}[ht]
381 \KwIn{a function $f$, an initial configuration $x^0$ ($\mathsf{N}$ bits)}
382 \KwOut{a number of iterations $\textit{nbit}$}
384 $\textit{nbit} \leftarrow 0$\;
386 $\textit{fair}\leftarrow\emptyset$\;
387 \While{$\left\vert{\textit{fair}}\right\vert < \mathsf{N} $}
389 $ s \leftarrow \textit{Random}(\mathsf{N})$ \;
390 $\textit{image} \leftarrow f(x) $\;
391 \If{$\textit{Random}(1) \neq 0$ and $x[s] \neq \textit{image}[s]$}{
392 $\textit{fair} \leftarrow \textit{fair} \cup \{s\}$\;
393 $x[s] \leftarrow \textit{image}[s]$\;
395 $\textit{nbit} \leftarrow \textit{nbit}+1$\;
397 \Return{$\textit{nbit}$}\;
399 \caption{Pseudo Code of stoping time calculus }
403 Practically speaking, for each number $\mathsf{N}$, $ 3 \le \mathsf{N} \le 16$,
404 10 functions have been generaed according to method presented in section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
405 is executed 10000 times with a random seed. The Figure~\ref{fig:stopping:moy}
406 summarizes these results. In this one, a circle represents the
407 approximation of $E[\ts]$ for a given $\mathsf{N}$.
408 The line is the graph of the function $x \mapsto 2x\ln(2x+8)$.
410 be observed that the approximation is largely
411 smaller than the upper bound given in theorem~\ref{prop:stop}.
412 It can be further deduced that the conjecture of the previous section
413 is realistic according the graph of $x \mapsto 2x\ln(2x+8)$.
421 % \begin{array}{|*{14}{l|}}
423 % \mathsf{N} & 4 & 5 & 6 & 7& 8 & 9 & 10& 11 & 12 & 13 & 14 & 15 & 16 \\
425 % \mathsf{N} & 21.8 & 28.4 & 35.4 & 42.5 & 50 & 57.7 & 65.6& 73.5 & 81.6 & 90 & 98.3 & 107.1 & 115.7 \\
429 % \caption{Average Stopping Time}\label{table:stopping:moy}
434 \includegraphics[scale=0.5]{complexity}
435 \caption{Average Stopping Time Approximation}\label{fig:stopping:moy}
442 %%% TeX-master: "main"
443 %%% ispell-dictionary: "american"