1 Let us us first recall the chaos theoretical context presented
2 in~\cite{bcgr11:ip}. In this article, the space of interest
3 is $\Bool^{{\mathsf{N}}} \times \llbracket1;{\mathsf{N}}\rrbracket^{\Nats}$
4 and the iteration function $\mathcal{H}_f$ is
6 $\Bool^{{\mathsf{N}}} \times \llbracket1;{\mathsf{N}}\rrbracket^{\Nats}$
9 \mathcal{H}_f(x,s)=(F_f(x,s_0),\sigma(s)).
12 $\sigma: \llbracket1;{\mathsf{N}}\rrbracket^{\Nats} \longrightarrow
13 \llbracket1;{\mathsf{N}}\rrbracket^{\Nats}
15 is a shift operation on sequences (\textit{i.e.}, a function that removes the
16 first element of the sequence) formally defined with
18 \sigma((u^k)_{k \in \Nats}) = (u^{k+1})_{k \in \Nats}.
21 We have proven~\cite[Theorem 1]{bcgr11:ip} that
22 $\mathcal{H}_f$ is chaotic in
23 $\Bool^{{\mathsf{N}}} \times \llbracket1;{\mathsf{N}}\rrbracket^{\Nats}$
24 if and only if $\Gamma(f)$ is strongly connected.
25 However, the corrolary which would say that $\chi_{\textit{14Secrypt}}$ is chaotic
26 cannot be directly deduced since we do not output all the successive
27 values of iterating $F_f$. Only a a few of them is concerned and
28 any subsequence of a chaotic sequence is not necessarily
29 a chaotic sequence too.
30 This necessitates a rigorous proof, which is the aim of this section.
36 \subsection{Devaney's Chaotic Dynamical Systems}
37 \label{subsec:Devaney}
40 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
41 \mathcal{X} \rightarrow \mathcal{X}$.
44 The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
45 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
50 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
51 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
55 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
56 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
57 any neighborhood of $x$ contains at least one periodic point (without
58 necessarily the same period).
62 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
63 The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
64 topologically transitive.
67 The chaos property is strongly linked to the notion of ``sensitivity'', defined
68 on a metric space $(\mathcal{X},d)$ by:
71 \label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions}
72 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
73 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
74 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
76 The constant $\delta$ is called the \emph{constant of sensitivity} of $f$.
79 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
80 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
81 sensitive dependence on initial conditions (this property was formerly an
82 element of the definition of chaos).
85 \subsection{A Metric Space for PRNG Iterations}
87 % Define by $\mathcal{S}_X$ the set of sequences whose elements belong in $X \subset \mathds{N}, X \neq \varnothing$,
88 % that is, $\mathcal{S}_X = \mathcal{X}^\mathds{N}$.
89 % Let $\mathsf{N} \in \mathds{N}^\ast$, $f:\mathds{B}^\mathsf{N} \rightarrow \mathds{B}^\mathsf{N}$, and
90 % $\mathcal{P} \subset \mathds{N}^\ast$ a non empty and finite set of integers.
92 % Any couple $(u,v) \in \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$ defines
93 % a ``chaotic iterations based'' pseudorandom number generator, which is denoted by $\textit{CIPRNG}_f^2(u,v)$~\cite{wbg10:ip}. It is
99 % x^0 \in \mathds{B}^\mathsf{N}\\
100 % \forall n \in \mathds{N}, \forall i \in \llbracket 1, \mathsf{N} \rrbracket, x_i^{n+1} = \left\{ \begin{array}{ll} f(x^n)_i & \text{if }~ i=u^n \\ x_i^n & \text{else} \end{array} \right.\\
101 % \forall n \in \mathds{N}, y^n = x^{v^n} .
105 % The outputted sequence produced by this generator is $\left(y^n\right)_{n \in \mathds{N}}$.
106 % Remark that, given a sequence $S \in \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket}$ called a ``chaotic strategy'',
107 % the following way to iterate:
108 % $$x^0 \in \mathds{B}^\mathsf{N}, \forall n \in \mathds{N}, \forall i \in \llbracket 1, \mathsf{N} \rrbracket, x_i^{n+1} = \left\{ \begin{array}{ll} f(x^n)_i & \text{if }~ i=S^n \\ x_i^n & \text{else} \end{array} \right. ,$$
109 % is referred in the discrete mathematics literature as ``chaotic iterations''~\cite{Robert} (a terminology which has
110 % \emph{a priori} no relation with the mathematical theory of chaos recalled previously), which
111 % explains the name provided to these categories of pseudorandom number generators.
114 % The formerly proposed $\textit{CIPRNG}_f^1(u)$~\cite{bgw09:ip,guyeuxTaiwan10} is equal to \linebreak $\textit{CIPRNG}_f^2\left(u,\left(1\right)_{n\in \mathds{N}}\right)$, where $\left(1\right)_{n\in \mathds{N}}$ is the sequence that is
115 % uniformly equal to 1.
116 % It has been proven as chaotic for the vectorial Boolean negation $f_0:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N}$,
117 % $(x_1, \hdots , x_\mathsf{N}) \longmapsto (\overline{x_1}, \hdots, \overline{x_\mathsf{N}})$ in \cite{bgw09:ip}
118 % and for a larger set of well-chosen iteration functions in~\cite{bcgr11:ip} but,
119 % as only one bit is modified at each iteration, this generator is not able to pass any reasonable statistical tests.
121 % The $\textit{XOR~CIPRNG}(S)$, for its part~\cite{DBLP:journals/corr/abs-1112-5239}, is defined as follows: $x^0 \in \mathds{B}^\mathsf{N}$, and $\forall n \in \mathds{N}, x^{n+1} = x^n \oplus S^n$
122 % where $S \in \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket}$ and $\oplus$ stands for the bitwise \emph{exclusive or} (xor) operation
123 % between the binary decomposition of $x^n$ and $S^n$. This is indeed a $CIPRNG_{f_0}^2 (u,v)$ generator:
125 % %$u,v \in \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket}$:
126 % for any given $S \in \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket}$, $v^n$ is the number
127 % of 1's in the binary decomposition of $S^n$ while $u^{v^n}, u^{v^n+1}, \hdots , u^{v^{n+1}-1}$
128 % are the positions of these ones.
129 % The $\textit{XOR~CIPRNG}$ has been proven chaotic and it is able to pass all the most stringent statistical
130 % batteries of tests~\cite{DBLP:journals/corr/abs-1112-5239}, namely: DieHARD~\cite{Marsaglia1996}, NIST~\cite{Nist10}, and TestU01~\cite{LEcuyerS07},
131 % which encompasses the two former ones. Furthermore, the output sequence is cryptographically secure
132 % when $S$ is cryptographically secure~\cite{DBLP:journals/corr/abs-1112-5239}.
133 % We are then left to prove $\textit{CIPRNG}_f^2(u,v)$ is chaotic.
135 % \subsection{The $\textit{CIPRNG}_f^2(u,v)$ is chaotic for well-chosen $f$}\label{sec:wellchosen}
137 % \subsection{The generator as a discrete dynamical system}
140 % This algorithm may be seen as $\mathsf{p}$ functional composition of $F_f$.
141 % We thus introduce the function
142 % $F_{f,\mathsf{p}} : \mathds{B}^\mathsf{N} \times \llbracket 1, \mathsf{N} \rrbracket^\mathsf{p} \rightarrow \mathds{B}^\mathsf{N}$ defined by
145 % F_{f,\mathsf{p}} (x,(u^0, u^1, \hdots, u^{\mathsf{p}-1})) \mapsto
146 % F_f(\hdots (F_f(F_f(x,u^0), u^1), \hdots), u^{\mathsf{p}-1}).
152 Let us first introduce $\mathcal{P} \subset \mathds{N}$ a finite nonempty
153 set having the cardinality $\mathsf{p} \in \mathds{N}^\ast$.
154 Intuitively, this is the set of authorized numbers of iterations.
155 Denote by $p_1, p_2, \hdots, p_\mathsf{p}$ the ordered elements of $\mathcal{P}$: $\mathcal{P} = \{ p_1, p_2, \hdots, p_\mathsf{p}\}$
156 and $p_1< p_2< \hdots < p_\mathsf{p}$. In our algorithm,
157 $\mathsf{p}$ is 1 and $p_1$ is $b$.
160 The Algorithm~\ref{CI Algorithm}
161 may be seen as $b$ functional composition of $F_f$.
162 However, it can be generalized with $p_i$, $p_i \in \mathcal{P}$,
163 functional compositions of $F_f$.
164 Thus, for any $p_i \in \mathcal{P}$ we introduce the function
165 $F_{f,p_i} : \mathds{B}^\mathsf{N} \times \llbracket 1, \mathsf{N} \rrbracket^{p_i} \rightarrow \mathds{B}^\mathsf{N}$ defined by
168 F_{f,p_i} (x,(u^0, u^1, \hdots, u^{p_i-1})) \mapsto \\
169 \qquad F_f(\hdots (F_f(F_f(x,u^0), u^1), \hdots), u^{p_i-1}).
174 The considered space is
175 $\mathcal{X}_{\mathsf{N},\mathcal{P}}= \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}}$, where
176 $\mathds{S}_{\mathsf{N},\mathcal{P}}=
177 \llbracket 1, \mathsf{N} \rrbracket^{\Nats}\times
178 \mathcal{P}^{\Nats}$.
179 Each element in this space is a pair where the first element is
180 $\mathsf{N}$-uple in $\Bool^{\mathsf{N}}$, as in the previous space.
181 The second element is a pair $((u^k)_{k \in \Nats},(v^k)_{k \in \Nats})$ of infinite sequences.
182 The sequence $(v^k)_{k \in \Nats}$ defines how many iterations are executed at time $k$ between two outputs.
183 The sequence $(u^k)_{k \in \Nats}$ defines which elements is modified.
185 Let us define the shift function $\Sigma$ for any element of $\mathds{S}_{\mathsf{N},\mathcal{P}}$.
189 \Sigma:&\mathds{S}_{\mathsf{N},\mathcal{P}} &\rightarrow
190 &\mathds{S}_{\mathsf{N},\mathcal{P}} \\
191 & \left((u^k)_{k \in \mathds{N}},(v^k)_{k \in \mathds{N}}\right) & \mapsto &
193 \left(\sigma^{v^0}\left((u^k)_{k \in \mathds{N}}\right), \right. \\
194 \qquad \left. \sigma\left((v^k)_{k \in \mathds{N}}\right)\right).
199 In other words, $\Sigma$ receives two sequences $u$ and $v$, and
200 it operates $v^0$ shifts on the first sequence and a single shift
205 G_f :& \mathcal{X}_{\mathsf{N},\mathcal{P}} & \rightarrow & \mathcal{X}_{\mathsf{N},\mathcal{P}}\\
206 & (e,(u,v)) & \mapsto & \left( F_{f,v^0}\left( e, (u^0, \hdots, u^{v^0-1}\right), \Sigma (u,v) \right) .
209 Then the outputs $(y^0, y^1, \hdots )$ produced by the $\textit{CIPRNG}_f^2(u,v)$ generator
210 are the first components of the iterations $X^0 = (x^0, (u,v))$ and $\forall n \in \mathds{N},
211 X^{n+1} = G_f(X^n)$ on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
218 \subsection{A metric on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
220 We define a distance $d$ on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ as follows.
222 $x=(e,s)$ and $\check{x}=(\check{e},\check{s})$ in
223 $\mathcal{X}_{\mathsf{N},\mathcal{P}} = \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}} $,
224 where $s=(u,v)$ and $\check{s}=(\check{u},\check{v})$ are in $ \mathds{S}_{\mathsf{N},\mathcal{P}} =
225 \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$.
227 \item $e$ and $\check{e}$ are integers belonging in $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. The Hamming distance
228 on their binary decomposition, that is, the number of dissimilar binary digits, constitutes the integral
229 part of $d(X,\check{X})$.
230 \item The fractional part is constituted by the differences between $v^0$ and $\check{v}^0$, followed by the differences
231 between finite sequences $u^0, u^1, \hdots, u^{v^0-1}$ and $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, followed by
232 differences between $v^1$ and $\check{v}^1$, followed by the differences
233 between $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ and $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
234 More precisely, let $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ and $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
236 \item The $p$ first digits of $d(x,\check{x})$ is $|v^0-\check{v}^0|$ written in decimal numeration (and with $p$ digits).
237 \item The next $n\times \max{(\mathcal{P})}$ digits aim at measuring how much $u^0, u^1, \hdots, u^{v^0-1}$ differs from $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. The $n$ first
238 digits are $|u^0-\check{u}^0|$. They are followed by
239 $|u^1-\check{u}^1|$ written with $n$ digits, etc.
242 $v^0=\check{v}^0$, then the process is continued until $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ and the fractional
243 part of $d(X,\check{X})$ is completed by 0's until reaching
244 $p+n\times \max{(\mathcal{P})}$ digits.
245 \item If $v^0<\check{v}^0$, then the $ \max{(\mathcal{P})}$ blocs of $n$
246 digits are $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
247 $\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digits), followed by 0's if required.
248 \item The case $v^0>\check{v}^0$ is dealt similarly.
250 \item The next $p$ digits are $|v^1-\check{v}^1|$, etc.
256 \newcommand{\ns}{$\hspace{.1em}$}
259 Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=2$), and that
262 u=\underline{6,} ~ \underline{11,5}, ...\\
269 \check{u}=\underline{6,4} ~ \underline{1}, ...\\
274 So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.01\ns00\ns04\ns00\ns00\ns00\ns00\ns00\ns00\ns00\ns00\ns00\ns01\ns10\ns05 ...$
275 Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$,
276 and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
277 at most $\max{(\mathcal{P})}$ times, we must complete this
278 value by some 0's in such a way that the obtained result
279 has $n\times \max{(\mathcal{P})}=22$ digits, that is:
280 0600000000000000000000. Similarly, the $\check{v}^0=2$ first
281 terms in $\check{u}$ are represented by 0604000000000000000000, and the absolute value of their
282 difference is equal to 0004000000000000000000. These digits are concatenated to 01, and
283 we start again with the remainder of the sequences.
288 Consider now that $\mathsf{N}=9$, and $\mathcal{P}=\{2,7\}$, and that
292 u=\underline{6,7,} ~ \underline{4,2,} ...\\
299 \check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
304 So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, as $|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
305 and $|9800000-4200000| = 5600000$.
310 $d$ can be more rigorously written as follows:
311 $$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
312 where: % $p=\max \mathcal{P}$ and:
314 \item $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance,
315 \item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline
318 d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = \\
319 \quad \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}}
320 \bigg(|v^k - \check{v}^k| \\
321 \quad\quad + \left| \sum_{l=0}^{v^k-1}
322 \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
323 \sum_{l=0}^{\check{v}^k-1}
324 \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
327 %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.
333 $d$ is a distance on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
338 $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance. We will prove that
339 $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ is a distance
340 too, thus $d$ will also be a distance, being the sum of two distances.
342 \item Obviously, $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})\geqslant 0$, and if $s=\check{s}$, then
343 $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$. Conversely, if $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$, then
344 $\forall k \in \mathds{N}, v^k=\check{v}^k$ due to the
345 definition of $d$. Then, as digits between positions $p+1$ and $p+n$ are null and correspond to $|u^0-\check{u}^0|$, we can conclude that $u^0=\check{u}^0$. An extension of this result to the whole first $n \times \max{(\mathcal{P})}$ bloc leads to $u^i=\check{u}^i$, $\forall i \leqslant v^0=\check{v}^0$, and by checking all the $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$.
346 \item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ is clearly symmetric
347 ($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$).
348 \item The triangle inequality is obtained because the absolute value satisfies it too.
353 Before being able to study the topological behavior of the general
354 chaotic iterations, we must first establish that:
357 For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on
358 $\left( \mathcal{X},d\right)$.
363 We will show this result by using the sequential continuity. Consider a
364 sequence $x^n=(e^n,(u^n,v^n)) \in \mathcal{X}_{\mathsf{N},\mathcal{P}}^\mathds{N}$ such
365 that $d(x^n,x) \longrightarrow 0$, for some $x=(e,(u,v))\in
366 \mathcal{X}_{\mathsf{N},\mathcal{P}}$. We will show that
367 $d\left(G_f(x^n),G_f(x)\right) \longrightarrow 0$.
368 Remark that $u$ and $v$ are sequences of sequences.
370 As $d(x^n,x) \longrightarrow 0$, there exists
371 $n_0\in\mathds{N}$ such that
372 $d(x^n,x) < 10^{-(p+n \max{(\mathcal{P})})}$
373 (its $p+n \max{(\mathcal{P})}$ first digits are null).
374 In particular, $\forall n \geqslant n_0, e^n=e$,
375 as the Hamming distance between the integral parts of
376 $x$ and $\check{x}$ is 0. Similarly, due to the nullity
377 of the $p+n \max{(\mathcal{P})}$ first digits of
378 $d(x^n,x)$, we can conclude that $\forall n \geqslant n_0$,
379 $(v^n)^0=v^0$, and that $\forall n \geqslant n_0$,
380 $(u^n)^0=u^0$, $(u^n)^1=u^1$, ..., $(u^n)^{v^0-1}=u^{v^0-1}$.
383 \item $G_f(x^n)_1=G_f(x)_1$: they have the same
384 Boolean vector as first coordinate.
385 \item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\Sigma (u^n,v^n); \Sigma(u,v)) = 10^{p+n \max{(\mathcal{P})}} d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u^n,v^n); (u,v))$. As the right part of the equality tends
386 to 0, we can deduce that it is the case too for the left part of the equality, and so
387 $G_f(x^n)_2$ is convergent to $G_f(x)_2$.
393 \subsection{$\Gamma_{\mathcal{P}}(f)$ as an extension of $\Gamma(f)$}
395 Let $\mathcal{P}=\{p_1, p_2, \hdots, p_\mathsf{p}\}$.
396 We define the directed graph $\Gamma_{\mathcal{P}}(f)$ as follows.
398 \item Its vertices are the $2^\mathsf{N}$ elements of $\mathds{B}^\mathsf{N}$.
399 \item Each vertex has $\displaystyle{\sum_{i=1}^\mathsf{p} \mathsf{N}^{p_i}}$ arrows, namely all the $p_1, p_2, \hdots, p_\mathsf{p}$ tuples
400 having their elements in $\llbracket 1, \mathsf{N} \rrbracket $.
401 \item There is an arc labeled $u_0, \hdots, u_{p_i-1}$, $i \in \llbracket 1, \mathsf{p} \rrbracket$ between vertices $x$ and $y$ if and only if
402 $y=F_{f,p_i} (x, (u_0, \hdots, u_{p_i-1})) $.
405 It is not hard to see that the graph $\Gamma_{\{1\}}(f)$ is
410 \begin{subfigure}[b]{0.45\textwidth}
412 \includegraphics[scale=0.85]{graphe1.pdf}
413 \caption{$\Gamma(f_0)$}
417 ~ %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc.
418 % (or a blank line to force the subfigure onto a new line)
419 \begin{subfigure}[b]{0.3\textwidth}
421 \includegraphics[scale=0.85]{graphe2.pdf}
422 \caption{$\Gamma_{\{2,3\}}(f_0)$}
425 ~ %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc.
426 \caption{Iterating $f_0:(x_1,x_2) \mapsto (\overline{x_1}, \overline{x_2})$}
432 Consider for instance $\mathsf{N}=2$,
433 Let $f_0:\mathds{B}^2 \longrightarrow \mathds{B}^2$ be the negation function,
434 \textit{i.e.}, $f_0(x_1,x_2) = (\overline{x_1}, \overline{x_2})$, and consider
435 $\mathcal{P}=\{2,3\}$. The graphs of iterations are given in
436 \textsc{Figure~\ref{fig:itg}}.
437 The \textsc{Figure~\ref{graphe1}} shows what happens when
438 displaying each iteration result.
439 On the contrary, the \textsc{Figure~\ref{graphe2}} explicits the behaviors
440 when always applying either 2 or 3 modifications before generating results.
441 Notice that here, orientations of arcs are not necessary
442 since the function $f_0$ is equal to its inverse $f_0^{-1}$.
445 \subsection{Proofs of chaos}
450 $\Gamma_{\mathcal{P}}(f)$ is strongly connected if and only if $G_f$ is
451 topologically transitive on $(\mathcal{X}_{\mathsf{N},\mathcal{P}}, d)$.
456 Suppose that $\Gamma_{\mathcal{P}}(f)$ is strongly connected.
457 Let $x=(e,(u,v)),\check{x}=(\check{e},(\check{u},\check{v}))
458 \in \mathcal{X}_{\mathsf{N},\mathcal{P}}$ and $\varepsilon >0$.
459 We will find a point $y$ in the open ball $\mathcal{B}(x,\varepsilon )$ and
460 $n_0 \in \mathds{N}$ such that $G_f^{n_0}(y)=\check{x}$: this strong transitivity
461 will imply the transitivity property.
462 We can suppose that $\varepsilon <1$ without loss of generality.
464 Let us denote by $(E,(U,V))$ the elements of $y$. As
465 $y$ must be in $\mathcal{B}(x,\varepsilon)$ and $\varepsilon < 1$,
466 $E$ must be equal to $e$. Let $k=\lfloor \log_{10} (\varepsilon) \rfloor +1$.
467 $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))$ must be lower than
468 $\varepsilon$, so the $k$ first digits of the fractional part of
469 $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))$ are null.
470 Let $k_1$ the smallest integer such that, if $V^0=v^0$, ..., $V^{k_1}=v^{k_1}$,
471 $U^0=u^0$, ..., $U^{\sum_{l=0}^{k_1}V^l-1} = u^{\sum_{l=0}^{k_1}v^l-1}$.
472 Then $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))<\varepsilon$.
473 In other words, any $y$ of the form $(e,((u^0, ..., u^{\sum_{l=0}^{k_1}v^l-1}),
474 (v^0, ..., v^{k_1}))$ is in $\mathcal{B}(x,\varepsilon)$.
476 Let $y^0$ such a point and $z=G_f^{k_1}(y^0) = (e',(u',v'))$. $\Gamma_{\mathcal{P}}(f)$
477 being strongly connected, there is a path between $e'$ and $\check{e}$. Denote
478 by $a_0, \hdots, a_{k_2}$ the edges visited by this path. We denote by
479 $V^{k_1}=|a_0|$ (number of terms in the finite sequence $a_1$),
480 $V^{k_1+1}=|a_1|$, ..., $V^{k_1+k_2}=|a_{k_2}|$, and by
481 $U^{k_1}=a_0^0$, $U^{k_1+1}=a_0^1$, ..., $U^{k_1+V_{k_1}-1}=a_0^{V_{k_1}-1}$,
482 $U^{k_1+V_{k_1}}=a_1^{0}$, $U^{k_1+V_{k_1}+1}=a_1^{1}$,...
484 Let $y=(e,((u^0, \dots, u^{\sum_{l=0}^{k_1}v^l-1}, a_0^0, \dots, a_0^{|a_0|}, a_1^0, \dots, $ \linebreak
485 $a_1^{|a_1|},\dots, a_{k_2}^0, \dots, a_{k_2}^{|a_{k_2}|},$
486 $\check{u}^0, \check{u}^1, \dots),(v^0, \dots, v^{k_1},|a_0|, \dots,$\linebreak
487 $|a_{k_2}|,\check{v}^0, \check{v}^1, \dots)))$. So $y\in \mathcal{B}(x,\varepsilon)$
488 and $G_{f}^{k_1+k_2}(y)=\check{x}$.
491 Conversely, if $\Gamma_{\mathcal{P}}(f)$ is not strongly connected, then there are
492 2 vertices $e_1$ and $e_2$ such that there is no path between $e_1$ and $e_2$.
493 That is, it is impossible to find $(u,v)\in \mathds{S}_{\mathsf{N},\mathcal{P}}$
494 and $n\in \mathds{N}$ such that $G_f^n(e,(u,v))_1=e_2$. The open ball $\mathcal{B}(e_2, 1/2)$
495 cannot be reached from any neighborhood of $e_1$, and thus $G_f$ is not transitive.
501 If $\Gamma_{\mathcal{P}}(f)$ is strongly connected, then $G_f$ is
502 regular on $(\mathcal{X}_{\mathsf{N},\mathcal{P}}, d)$.
506 Let $x=(e,(u,v)) \in \mathcal{X}_{\mathsf{N},\mathcal{P}}$ and $\varepsilon >0$.
507 As in the proofs of Prop.~\ref{prop:trans}, let $k_1 \in \mathds{N}$ such
509 $$\left\{(e, ((u^0, \dots, u^{v^{k_1-1}},U^0, U^1, \dots),(v^0, \dots, v^{k_1},V^0, V^1, \dots)) \mid \right.$$
510 $$\left.\forall i,j \in \mathds{N}, U^i \in \llbracket 1, \mathsf{N} \rrbracket, V^j \in \mathcal{P}\right\}
511 \subset \mathcal{B}(x,\varepsilon),$$
512 and $y=G_f^{k_1}(e,(u,v))$. $\Gamma_{\mathcal{P}}(f)$ being strongly connected,
513 there is at least a path from the Boolean state $y_1$ of $y$ and $e$ \ANNOT{Phrase pas claire : "from \dots " mais pas de "to \dots"}.
514 Denote by $a_0, \hdots, a_{k_2}$ the edges of such a path.
515 Then the point:\linebreak
516 $(e,((u^0, \dots, u^{v^{k_1-1}},a_0^0, \dots, a_0^{|a_0|}, a_1^0, \dots, a_1^{|a_1|},\dots,
517 a_{k_2}^0, \dots,$ \linebreak
518 $\,a_{k_2}^{|a_{k_2}|},u^0, \dots, u^{v^{k_1-1}},a_0^0, \dots,a_{k_2}^{|a_{k_2}|}\dots),$\linebreak
519 $(v^0, \dots, v^{k_1}, |a_0|, \dots, |a_{k_2}|,v^0, \dots, v^{k_1}, |a_0|, \dots, |a_{k_2}|,\dots))$
520 is a periodic point in the neighborhood $\mathcal{B}(x,\varepsilon)$ of $x$.
523 $G_f$ being topologically transitive and regular, we can thus conclude that
525 The function $G_f$ is chaotic on $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ if
526 and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$ is strongly connected.
530 The pseudorandom number generator $\chi_{\textit{14Secrypt}}$ is not chaotic
531 on $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ for the negation function.
534 In this context, $\mathcal{P}$ is the singleton $\{b\}$.
535 If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach
536 its neighborhood and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected.
537 If $b$ is odd, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach itself
538 and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected.
541 The next section recalls a general scheme to produce
542 functions and a iteration number $b$
543 such that $\Gamma_{\{b\}}$ is strongly connected.
548 %%% TeX-master: "main"
549 %%% ispell-dictionary: "american"