1 This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $
2 issued from an hypercube where an Hamiltonian path has been removed
3 as described in previous section.
4 Notice that the iteration graph is always a subgraph of
5 ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the
6 edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$.
7 Next, if we add probabilities on the transition graph, iterations can be
8 interpreted as Markov chains.
11 Let us consider for instance
12 the graph $\Gamma(f)$ defined
13 in \textsc{Figure~\ref{fig:iteration:f*}.} and
14 the probability function $p$ defined on the set of edges as follows:
18 = \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
19 = \frac{1}{6} \textrm{ otherwise.}
23 The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is
26 \begin{array}{llllllll}
41 A specific random walk in this modified hypercube is first
42 introduced (See section~\ref{sub:stop:formal}). We further
43 study this random walk in a theoretical way to
44 provide an upper bound of fair sequences
45 (See section~\ref{sub:stop:bound}).
46 We finally complete these study with experimental
47 results that reduce this bound (Sec.~\ref{sub:stop:exp}).
48 Notice that for a general references on Markov chains
49 see~\cite{LevinPeresWilmer2006},
50 and particularly Chapter~5 on stopping times.
53 \subsection{Formalizing the Random Walk}\label{sub:stop:formal}
55 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total
56 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
58 $$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that
59 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if
60 $\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has
61 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
63 Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. For any
64 $X\in \Bool^{\mathsf{N}}$, let $P(X,\cdot)$ be the distribution induced by the
65 ${\rm bin}(X)$-th row of $P$, where ${\rm bin}(X)$ is the integer whose
66 binary encoding is $X$. If the Markov chain induced by $P$ has a stationary
67 distribution $\pi$, then we define
68 $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$
70 %\ANNOT{incohérence de notation $X$ : entier ou dans $B^N$ ?}
73 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
75 %% Intuitively speaking, $t_{\rm mix}$ is a mixing time
76 %% \textit{i.e.}, is the time until the matrix $X$ of a Markov chain
77 %% is $\epsilon$-close to a stationary distribution.
79 Intutively speaking, $t_{\rm mix}(\varepsilon)$ is the time/steps required
80 to be sure to be $\varepsilon$-close to the stationary distribution, wherever
87 $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
92 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
93 % un intérêt dans la preuve ensuite.}
98 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
99 % One can prove that \JFc{Ou cela a-t-il été fait?}
100 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
104 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random
105 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
106 time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
107 (\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
108 In other words, the event $\{\tau = t \}$ only depends on the values of
109 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
112 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
113 random mapping representation of the Markov chain. A {\it randomized
114 stopping time} for the Markov chain is a stopping time for
115 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
116 as stationary distribution, then a {\it stationary time} $\tau$ is a
117 randomized stopping time (possibly depending on the starting position $X$),
118 such that the distribution of $X_\tau$ is $\pi$:
119 $$\P_X(X_\tau=Y)=\pi(Y).$$
121 \subsection{Upper bound of Stopping Time}\label{sub:stop:bound}
123 A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
124 independent of $\tau$. The following result will be useful~\cite[Proposition~6.10]{LevinPeresWilmer2006},
127 \begin{thrm}\label{thm-sst}
128 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
133 %Let $\Bool^n$ be the set of words of length $n$.
135 X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
136 In other words, $E$ is the set of all the edges in the classical
138 Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$.
139 Intuitively speaking $h$ aims at memorizing for each node
140 $X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle,
141 \textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$
146 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
147 0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube,
148 \textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$
151 We define the Markov matrix $P_h$ for each line $X$ and
152 each column $Y$ as follows:
156 P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\
157 P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\
158 P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
161 \label{eq:Markov:rairo}
164 We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function
165 such that for any $X \in \Bool^{\mathsf{N}} $,
166 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$.
167 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
168 $\ov{h}(\ov{h}(X))\neq X$.
170 \begin{lmm}\label{lm:h}
171 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
175 Let $\ov{h}$ be bijective.
176 Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
177 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and
178 $\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$.
179 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
180 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and
181 $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$.
182 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
183 This contradicts the square-freeness of $\ov{h}$.
186 Let $Z$ be a random variable that is uniformly distributed over
187 $\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$.
188 For $X\in \Bool^{\mathsf{N}}$, we
189 define, with $Z=(i,b)$,
193 f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
194 f(X,Z)=X& \text{otherwise.}
198 The Markov chain is thus defined as
205 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
206 %\section{Stopping time}
208 An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair}
210 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
211 In other words, there exist a date $j$ before $t$ where
212 the first element of the random variable $Z$ is exactly $l$
213 (\textit{i.e.}, $l$ is the strategy at date $j$)
214 and where the configuration $X_j$ allows to traverse the edge $l$.
216 Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$
217 are fair. The integer $\ts$ is a randomized stopping time for
218 the Markov chain $(X_t)$.
222 The integer $\ts$ is a strong stationary time.
226 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
227 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
229 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
230 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
231 bit of $X_{\tau_\ell}$
232 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
233 This probability is independent of the value of the other bits.
237 Moving next in the chain, at each step,
238 the $l$-th bit is switched from $0$ to $1$ or from $1$ to $0$ each time with
239 the same probability. Therefore, for $t\geq \tau_\ell$, the
240 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, and
241 independently of the value of the other bits, proving the
244 \begin{thrm} \label{prop:stop}
245 If $\ov{h}$ is bijective and square-free, then
246 $E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$.
249 For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$,
250 let $S_{X,\ell}$ be the
251 random variable that counts the number of steps
252 from $X$ until we reach a configuration where
253 $\ell$ is fair. More formally
256 S_{X,\ell}&=&\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.) \\
257 && \qquad \text{ and } X_0=X\}.
262 % $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
265 \begin{lmm}\label{prop:lambda}
266 Let $\ov{h}$ is a square-free bijective function. Then
270 $E[S_{X,\ell}]\leq 8{\mathsf{N}}^2$ is established.
274 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
275 \frac{1}{4{\mathsf{N}}^2}$.
279 \item if $h(X)\neq \ell$, then
280 $\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$.
281 \item otherwise, $h(X)=\ell$, then
282 $\P(S_{X,\ell}=1)=0$.
283 But in this case, intuitively, it is possible to move
284 from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
285 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched.
287 since $\ov{h}$ is square-free,
288 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
289 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
290 $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h},
291 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
292 X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq
293 \frac{1}{4{\mathsf{N}}^2}$.
299 Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one
300 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
301 \left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$.
303 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
304 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
305 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
308 E[S_{X,\ell}]&=&\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\\
310 \P(S_{X,\ell}\geq 1) +\P(S_{X,\ell}\geq 2)\\
311 && \qquad +2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).
315 $$E[S_{X,\ell}]\leq 1+1+2
316 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$
317 which concludes the proof.
320 Let $\ts^\prime$ be the time used to get all the bits but one fair.
322 \begin{lmm}\label{lm:stopprime}
323 One has $E[\ts^\prime]\leq 4{\mathsf{N}} \ln ({\mathsf{N}}+1).$
327 This is a classical Coupon Collector's like problem. Let $W_i$ be the
328 random variable counting the number of moves done in the Markov chain while
329 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$.
330 But when we are at position $X$ with $i-1$ fair bits, the probability of
331 obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair,
332 or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair.
335 $\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
336 Consequently, we have $\P(W_i\geq k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}-i+1}.$
337 It follows that $E[W_i]=\sum_{k=1}^{+\infty} \P (W_i\geq k)\leq {\mathsf{N}} \frac{{\mathsf{N}}-i+2}{({\mathsf{N}}-i+1)^2}\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$.
342 $E[W_i]\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore
343 $$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq
344 4{\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{{\mathsf{N}}-i+2}=
345 4{\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$
347 But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that
348 $1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$
351 4{\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq
352 4{\mathsf{N}}\ln({\mathsf{N}}+1)$.
355 One can now prove Theorem~\ref{prop:stop}.
358 Since $\ts^\prime$ is the time used to obtain $\mathsf{N}-1$ fair bits.
359 Assume that the last unfair bit is $\ell$. One has
360 $\ts=\ts^\prime+S_{X_\tau,\ell}$, and therefore $E[\ts] =
361 E[\ts^\prime]+E[S_{X_\tau,\ell}]$. Therefore, Theorem~\ref{prop:stop} is a
362 direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
365 Now using Markov Inequality, one has $\P_X(\tau > t)\leq \frac{E[\tau]}{t}$.
366 With $t_n=32N^2+16N\ln (N+1)$, one obtains: $\P_X(\tau > t_n)\leq \frac{1}{4}$.
367 Therefore, using the defintion of $t_{\rm mix)}$ and
368 Theorem~\ref{thm-sst}, it follows that
369 $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
372 Notice that the calculus of the stationary time upper bound is obtained
373 under the following constraint: for each vertex in the $\mathsf{N}$-cube
374 there are one ongoing arc and one outgoing arc that are removed.
375 The calculus doesn't consider (balanced) Hamiltonian cycles, which
376 are more regular and more binding than this constraint.
378 is obtained using the coarse Markov Inequality. For the
379 classical (lazzy) random walk the $\mathsf{N}$-cube, without removing any
380 Hamiltonian cylce, the mixing time is in $\Theta(N\ln N)$.
381 We conjecture that in our context, the mixing time is also in $\Theta(N\ln
385 In this later context, we claim that the upper bound for the stopping time
386 should be reduced. This fact is studied in the next section.
388 \subsection{Practical Evaluation of Stopping Times}\label{sub:stop:exp}
390 Let be given a function $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$
391 and an initial seed $x^0$.
392 The pseudo code given in algorithm~\ref{algo:stop} returns the smallest
393 number of iterations such that all elements $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ are fair. It allows to deduce an approximation of $E[\ts]$
394 by calling this code many times with many instances of function and many
397 \begin{algorithm}[ht]
399 \KwIn{a function $f$, an initial configuration $x^0$ ($\mathsf{N}$ bits)}
400 \KwOut{a number of iterations $\textit{nbit}$}
402 $\textit{nbit} \leftarrow 0$\;
404 $\textit{fair}\leftarrow\emptyset$\;
405 \While{$\left\vert{\textit{fair}}\right\vert < \mathsf{N} $}
407 $ s \leftarrow \textit{Random}(\mathsf{N})$ \;
408 $\textit{image} \leftarrow f(x) $\;
409 \If{$\textit{Random}(1) \neq 0$ and $x[s] \neq \textit{image}[s]$}{
410 $\textit{fair} \leftarrow \textit{fair} \cup \{s\}$\;
411 $x[s] \leftarrow \textit{image}[s]$\;
413 $\textit{nbit} \leftarrow \textit{nbit}+1$\;
415 \Return{$\textit{nbit}$}\;
417 \caption{Pseudo Code of stoping time calculus }
421 Practically speaking, for each number $\mathsf{N}$, $ 3 \le \mathsf{N} \le 16$,
422 10 functions have been generated according to method presented in section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
423 is executed 10000 times with a random seed. The Figure~\ref{fig:stopping:moy}
424 summarizes these results. In this one, a circle represents the
425 approximation of $E[\ts]$ for a given $\mathsf{N}$.
426 The line is the graph of the function $x \mapsto 2x\ln(2x+8)$.
428 be observed that the approximation is largely
429 smaller than the upper bound given in theorem~\ref{prop:stop}.
430 It can be further deduced that the conjecture of the previous section
431 is realistic according the graph of $x \mapsto 2x\ln(2x+8)$.
439 % \begin{array}{|*{14}{l|}}
441 % \mathsf{N} & 4 & 5 & 6 & 7& 8 & 9 & 10& 11 & 12 & 13 & 14 & 15 & 16 \\
443 % \mathsf{N} & 21.8 & 28.4 & 35.4 & 42.5 & 50 & 57.7 & 65.6& 73.5 & 81.6 & 90 & 98.3 & 107.1 & 115.7 \\
447 % \caption{Average Stopping Time}\label{table:stopping:moy}
452 \includegraphics[width=0.49\textwidth]{complexity}
453 \caption{Average Stopping Time Approximation}\label{fig:stopping:moy}
460 %%% TeX-master: "main"
461 %%% ispell-dictionary: "american"