]> AND Private Git Repository - 16dcc.git/blob - stopping.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
khkhj
[16dcc.git] / stopping.tex
1
2
3
4 Let thus be given such kind of map.
5 This article focuses on studying its iterations according to
6 the equation~(\ref{eq:asyn}) with a given strategy.
7 First of all, this can be interpreted as walking into its iteration graph 
8 where the choice of the edge to follow is decided by the strategy.
9 Notice that the iteration graph is always a subgraph of 
10 ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the 
11 edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$. 
12 Next, if we add probabilities on the transition graph, iterations can be 
13 interpreted as Markov chains.
14
15 \begin{xpl}
16 Let us consider for instance  
17 the graph $\Gamma(f)$ defined 
18 in \textsc{Figure~\ref{fig:iteration:f*}.} and 
19 the probability function $p$ defined on the set of edges as follows:
20 $$
21 p(e) \left\{
22 \begin{array}{ll}
23 = \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
24 = \frac{1}{6} \textrm{ otherwise.}
25 \end{array}
26 \right.  
27 $$
28 The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is 
29 \[
30 P=\dfrac{1}{6} \left(
31 \begin{array}{llllllll}
32 4&1&1&0&0&0&0&0 \\
33 1&4&0&0&0&1&0&0 \\
34 0&0&4&1&0&0&1&0 \\
35 0&1&1&4&0&0&0&0 \\
36 1&0&0&0&4&0&1&0 \\
37 0&0&0&0&1&4&0&1 \\
38 0&0&0&0&1&0&4&1 \\
39 0&0&0&1&0&1&0&4 
40 \end{array}
41 \right)
42 \]
43 \end{xpl}
44
45
46 % % Let us first recall the  \emph{Total Variation} distance $\tv{\pi-\mu}$,
47 % % which is defined for two distributions $\pi$ and $\mu$ on the same set 
48 % % $\Bool^n$  by:
49 % % $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$ 
50 % % It is known that
51 % % $$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$
52
53 % % Let then $M(x,\cdot)$ be the
54 % % distribution induced by the $x$-th row of $M$. If the Markov chain
55 % % induced by
56 % % $M$ has a stationary distribution $\pi$, then we define
57 % % $$d(t)=\max_{x\in\Bool^n}\tv{M^t(x,\cdot)-\pi}.$$
58 % Intuitively $d(t)$ is the largest deviation between
59 % the distribution $\pi$ and $M^t(x,\cdot)$, which 
60 % is the result of iterating $t$ times the function.
61 % Finally, let $\varepsilon$ be a positive number, the \emph{mixing time} 
62 % with respect to $\varepsilon$ is given by
63 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
64 % It defines the smallest iteration number 
65 % that is sufficient to obtain a deviation lesser than $\varepsilon$.
66 % Notice that the upper and lower bounds of mixing times cannot    
67 % directly be computed with eigenvalues formulae as expressed 
68 % in~\cite[Chap. 12]{LevinPeresWilmer2006}. The authors of this latter work  
69 % only consider reversible Markov matrices whereas we do no restrict our 
70 % matrices to such a form.
71
72
73
74
75
76
77
78 This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $ 
79 issued from an hypercube where an Hamiltonian path has been removed.
80 A specific random walk in this modified hypercube is first 
81 introduced. We further detail
82 a theoretical study on the length of the path 
83 which is sufficient to follow to get a uniform distribution.
84 Notice that for a general references on Markov chains
85 see~\cite{LevinPeresWilmer2006}
86 , and particularly Chapter~5 on stopping times.  
87
88
89
90
91 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total
92 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
93 defined by
94 $$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that
95 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if
96 $\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has
97 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
98
99 Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the
100 distribution induced by the $X$-th row of $P$. If the Markov chain induced by
101 $P$ has a stationary distribution $\pi$, then we define
102 $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$
103
104 and
105
106 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
107 One can prove that
108
109 $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
110
111
112
113
114 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il 
115 % un intérêt dans la preuve ensuite.}
116
117
118
119 %and
120 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
121 % One can prove that \JFc{Ou cela a-t-il été fait?}
122 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
123
124
125
126 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random
127 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
128   time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
129 (\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. 
130 In other words, the event $\{\tau = t \}$ only depends on the values of 
131 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$. 
132  
133
134 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
135 random mapping representation of the Markov chain. A {\it randomized
136   stopping time} for the Markov chain is a stopping time for
137 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
138 as stationary distribution, then a {\it stationary time} $\tau$ is a
139 randomized stopping time (possibly depending on the starting position $X$),
140 such that  the distribution of $X_\tau$ is $\pi$:
141 $$\P_X(X_\tau=Y)=\pi(Y).$$
142
143 A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
144 independent of $\tau$. 
145
146
147 \begin{thrm}
148 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
149 \P_X(\tau > t)$.
150 \end{thrm}
151
152
153 %Let $\Bool^n$ be the set of words of length $n$. 
154 Let $E=\{(X,Y)\mid
155 X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
156 In other words, $E$ is the set of all the edges in the classical 
157 ${\mathsf{N}}$-cube. 
158 Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$.
159 Intuitively speaking $h$ aims at memorizing for each node 
160 $X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle,
161 \textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ 
162 cannot be switched.
163
164
165
166 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
167 0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube, 
168 \textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$ 
169 has been removed.
170
171 We define the Markov matrix $P_h$ for each line $X$ and 
172 each column $Y$  as follows:
173 \begin{equation}
174 \left\{
175 \begin{array}{ll}
176 P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\
177 P_h(X,Y)=0 & \textrm{if  $(X,Y)\notin E_h$}\\
178 P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
179 \end{array}
180 \right.
181 \label{eq:Markov:rairo}
182 \end{equation} 
183
184 We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function 
185 such that for any $X \in \Bool^{\mathsf{N}} $, 
186 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. 
187 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
188 $\ov{h}(\ov{h}(X))\neq X$. 
189
190 \begin{lmm}\label{lm:h}
191 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
192 \end{lmm}
193
194 \begin{proof}
195 Let $\ov{h}$ be bijective.
196 Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
197 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and 
198 $\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$.
199 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
200 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and 
201 $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$.
202 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
203 This contradicts the square-freeness of $\ov{h}$.
204 \end{proof}
205
206 Let $Z$ be a random variable that is uniformly distributed over
207 $\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$.
208 For $X\in \Bool^{\mathsf{N}}$, we
209 define, with $Z=(i,b)$,  
210 $$
211 \left\{
212 \begin{array}{ll}
213 f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
214 f(X,Z)=X& \text{otherwise.} 
215 \end{array}\right.
216 $$
217
218 The Markov chain is thus defined as 
219 $$
220 X_t= f(X_{t-1},Z_t)
221 $$
222
223
224
225 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
226 %\section{Stopping time}
227
228 An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} 
229 at time $t$ if there
230 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
231 In other words, there exist a date $j$ before $t$ where 
232 the first element of the random variable $Z$ is exactly $l$ 
233 (\textit{i.e.}, $l$ is the strategy at date $j$) 
234 and where the configuration $X_j$ allows to traverse the edge $l$.  
235  
236 Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$
237 are fair. The integer $\ts$ is a randomized stopping time for
238 the Markov chain $(X_t)$.
239
240
241 \begin{lmm}
242 The integer $\ts$ is a strong stationary time.
243 \end{lmm}
244
245 \begin{proof}
246 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
247 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
248 such that 
249 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
250 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
251 bit of $X_{\tau_\ell}$ 
252 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
253
254  Moving next in the chain, at each step,
255 the $l$-th bit  is switched from $0$ to $1$ or from $1$ to $0$ each time with
256 the same probability. Therefore,  for $t\geq \tau_\ell$, the
257 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
258 lemma.\end{proof}
259
260 \begin{thrm} \label{prop:stop}
261 If $\ov{h}$ is bijective and square-free, then
262 $E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$. 
263 \end{thrm}
264
265 For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$, 
266 let $S_{X,\ell}$ be the
267 random variable that counts the number of steps 
268 from $X$ until we reach a configuration where
269 $\ell$ is fair. More formally
270 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
271
272 %  We denote by
273 % $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
274
275
276 \begin{lmm}\label{prop:lambda}
277 Let $\ov{h}$ is a square-free bijective function. Then
278 for all $X$ and 
279 all $\ell$, 
280 the inequality 
281 $E[S_{X,\ell}]\leq 8{\mathsf{N}}^2$ is established.
282 \end{lmm}
283
284 \begin{proof}
285 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
286 \frac{1}{4{\mathsf{N}}^2}$. 
287 Let $X_0= X$.
288 Indeed, 
289 \begin{itemize}
290 \item if $h(X)\neq \ell$, then
291 $\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$. 
292 \item otherwise, $h(X)=\ell$, then
293 $\P(S_{X,\ell}=1)=0$.
294 But in this case, intuitively, it is possible to move
295 from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
296 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched. 
297 More formally,
298 since $\ov{h}$ is square-free,
299 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
300 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
301 $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h},
302 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
303 X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq
304 \frac{1}{4{\mathsf{N}}^2}$.
305 \end{itemize}
306
307
308
309
310 Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one
311 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
312 \left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$.
313  Moreover,
314 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
315 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
316 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
317 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
318 \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
319 Consequently,
320 $$E[S_{X,\ell}]\leq 1+1+2
321 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$
322 which concludes the proof.
323 \end{proof}
324
325 Let $\ts^\prime$ be the time used to get all the bits but one fair.
326
327 \begin{lmm}\label{lm:stopprime}
328 One has $E[\ts^\prime]\leq 4{\mathsf{N}} \ln ({\mathsf{N}}+1).$
329 \end{lmm}
330
331 \begin{proof}
332 This is a classical  Coupon Collector's like problem. Let $W_i$ be the
333 random variable counting the number of moves done in the Markov chain while
334 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$.
335  But when we are at position $X$ with $i-1$ fair bits, the probability of
336  obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair,
337  or  $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair. 
338
339 Therefore,
340 $\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
341 Consequently, we have $\P(W_i\geq k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}-i+1}.$
342 It follows that $E[W_i]=\sum_{k=1}^{+\infty} \P (W_i\geq k)\leq {\mathsf{N}} \frac{{\mathsf{N}}-i+2}{({\mathsf{N}}-i+1)^2}\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$.
343
344
345
346 It follows that 
347 $E[W_i]\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore
348 $$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq 
349 4{\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{{\mathsf{N}}-i+2}=
350 4{\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$
351
352 But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that
353 $1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$
354 Consequently,
355 $E[\ts^\prime]\leq 
356 4{\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq 
357 4{\mathsf{N}}\ln({\mathsf{N}}+1)$.
358 \end{proof}
359
360 One can now prove Theorem~\ref{prop:stop}.
361
362 \begin{proof}
363 Since $\ts^\prime$ is the time used to obtain $\mathsf{N}-1$ fair bits.
364 Assume that the last unfair bit is $\ell$. One has
365 $\ts=\ts^\prime+S_{X_\tau,\ell}$, and therefore
366 $E[\ts] = E[\ts^\prime]+E[S_{X_\tau,\ell}]$. Therefore,
367 Theorem~\ref{prop:stop} is a direct application of
368 lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
369 \end{proof}
370
371 Notice that the calculus of the stationary time upper bound is obtained
372 under the following constraint: for each vertex in the $\mathsf{N}$-cube 
373 there are one ongoing arc and one outgoing arc that are removed. 
374 The calculus does not consider (balanced) Hamiltonian cycles, which 
375 are more regular and more binding than this constraint.
376 In this later context, we claim that the upper bound for the stopping time 
377 should be reduced.