]> AND Private Git Repository - Cipher_code.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
authorcouturie <couturie@extinction.home>
Wed, 3 Nov 2021 12:56:33 +0000 (13:56 +0100)
committercouturie <couturie@extinction.home>
Wed, 3 Nov 2021 12:56:33 +0000 (13:56 +0100)
OneRoundIoT/openssl/Makefile
OneRoundIoT/openssl/openssl_evp_ocb.c [new file with mode: 0755]

index 34b74d2a0670b8dc651d3731317f476126bce8d4..b88f1c9a4c8e60cf2854ad75c8b702e3e6fa8894 100644 (file)
@@ -6,6 +6,7 @@ OBJ3 =    pixmap_io.o openssl_evp_ccm.o
 OBJ4 =    pixmap_io.o aesccm.o 
 OBJ5 =    pixmap_io.o openssl_evp_gcm.o
 OBJ6 =    pixmap_io.o openssl_evp_hmac.o
+OBJ7 =    pixmap_io.o openssl_evp_ocb.o
 
 openssl_evp: $(OBJ)
        $(C) -o $@ $^ $(CFLAGS)
@@ -26,11 +27,14 @@ openssl_evp_gcm: $(OBJ5)
 openssl_evp_hmac: $(OBJ6)
        $(C) -o $@ $^ $(CFLAGS)
 
+openssl_evp_ocb: $(OBJ7)
+       $(C) -o $@ $^ $(CFLAGS)
+
 
 %.o: %.c 
        $(C) -c -o $@ $<  -O3
 
 
 clean:
-       rm -rf $(OBJ)  openssl_evp openssl_evp_cmac openssl_evp_ccm
+       rm -rf $(OBJ)  openssl_evp openssl_evp_cmac openssl_evp_ccm openssl_evp_ocb
  
diff --git a/OneRoundIoT/openssl/openssl_evp_ocb.c b/OneRoundIoT/openssl/openssl_evp_ocb.c
new file mode 100755 (executable)
index 0000000..480df1e
--- /dev/null
@@ -0,0 +1,371 @@
+//gcc pixmap_io.c  -c
+//gcc openssl_evp.c pixmap_io.o -o  openssl_evp -I /usr/include/openssl/ -lcrypto -O3 -std=c99 
+
+
+#include <openssl/conf.h>
+#include <openssl/evp.h>
+#include <openssl/err.h>
+#include <openssl/ssl.h>
+#include <openssl/bio.h>
+#include <openssl/cmac.h>
+#include <string.h>
+#include <sys/time.h>
+#include "pixmap_io.h"
+
+typedef unsigned char   uchar;
+
+int nb_test=1;
+int ctr=0;
+
+double TimeStart()
+{
+  struct timeval tstart;
+  gettimeofday(&tstart,0);
+  return( (double) (tstart.tv_sec + tstart.tv_usec*1e-6) );
+}
+
+double TimeStop(double t)
+{
+  struct timeval tend;
+
+  gettimeofday(&tend,0);
+  t = (double) (tend.tv_sec + tend.tv_usec*1e-6) - t;
+  return (t);
+}
+
+
+void printBytes(unsigned char *buf, size_t len) {
+  for(int i=0; i<len; i++) {
+    printf("%02x ", buf[i]);
+  }
+  printf("\n");
+}
+
+
+void handleErrors(void)
+{
+  ERR_print_errors_fp(stderr);
+  abort();
+}
+
+
+int encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key,
+           unsigned char *iv, unsigned char *ciphertext, int ctr, int index)
+{
+  CMAC_CTX *ctx;
+
+  int len;
+
+  int ciphertext_len;
+
+  /* Create and initialise the context */
+  if(!(ctx = CMAC_CTX_new())) handleErrors();
+
+  /* Initialise the encryption operation. IMPORTANT - ensure you use a key
+   * and IV size appropriate for your cipher
+   * In this example we are using 256 bit AES (i.e. a 256 bit key). The
+   * IV size for *most* modes is the same as the block size. For AES this
+   * is 128 bits */
+  //static double  time=0;
+  //double t=0;
+  //t=TimeStart();
+  //256
+  //avant ecb
+  if(ctr) {
+    if(1 != CMAC_Init(ctx, key, 16, EVP_aes_128_ocb(), NULL))
+      handleErrors();
+  }
+  else
+    if(1 != CMAC_Init(ctx, key, 16, EVP_aes_128_ocb(), NULL))
+       handleErrors();
+  size_t mactlen;
+unsigned char mact[16] = {0}; 
+  //time+=TimeStop(t);
+  //printf("Time init %f\n",time);
+
+  
+//  int cipherBlockSize = EVP_CIPHER_CTX_block_size(ctx);  
+//  printf("INFO(evp_encrypt): block size: %d\n", cipherBlockSize);
+
+  
+  /* Provide the message to be encrypted, and obtain the encrypted output.
+   * EVP_EncryptUpdate can be called multiple times if necessary
+   */
+
+/*
+  static double  time=0;
+  double t=0;
+  t=TimeStart();
+*/
+  for(int i=0;i<nb_test;i++)
+  {  
+  
+      if(1 != CMAC_Update(ctx,  plaintext, plaintext_len))
+      handleErrors();
+    ciphertext_len = len;
+    
+  }
+/*  time+=TimeStop(t);
+  // if(index==nb_test-1)
+  printf("Time encrypt %f\n",time);
+    
+*/
+
+  
+  /* Finalise the encryption. Further ciphertext bytes may be written at
+   * this stage.
+   */
+  if(1 != CMAC_Final(ctx,  mact, &mactlen)) handleErrors();
+  ciphertext_len += len;
+
+  //  printBytes(mact, mactlen);
+  
+  /* Clean up */
+  CMAC_CTX_free(ctx);
+
+  return ciphertext_len;
+}
+
+int decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *key,
+           unsigned char *iv, unsigned char *plaintext, int ctr, int index)
+{
+  EVP_CIPHER_CTX *ctx;
+
+  int len;
+
+  int plaintext_len;
+
+  /* Create and initialise the context */
+  if(!(ctx = EVP_CIPHER_CTX_new())) handleErrors();
+
+  /* Initialise the decryption operation. IMPORTANT - ensure you use a key
+   * and IV size appropriate for your cipher
+   * In this example we are using 256 bit AES (i.e. a 256 bit key). The
+   * IV size for *most* modes is the same as the block size. For AES this
+   * is 128 bits */
+
+  //256
+
+  //avant => ecb
+  if(ctr) {
+    if(1 != EVP_DecryptInit_ex(ctx, EVP_aes_128_ocb(), NULL, key, iv))
+      handleErrors();
+  }
+  else
+      if(1 != EVP_DecryptInit_ex(ctx, EVP_aes_128_ocb(), NULL, key, iv))
+    handleErrors();
+
+  /* Provide the message to be decrypted, and obtain the plaintext output.
+   * EVP_DecryptUpdate can be called multiple times if necessary
+   */
+  
+/*  static double time=0;
+  double t=0;
+  t=TimeStart();
+*/
+  for(int i=0;i<nb_test;i++)
+  {  
+    plaintext_len = 0;
+    if(1 != EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len))
+      handleErrors();
+    plaintext_len = len;
+  }
+/*  time+=TimeStop(t);
+//  if(index==nb_test-1)
+    printf("Time decrypt %f\n",time);
+*/
+
+  
+  /* Finalise the decryption. Further plaintext bytes may be written at
+   * this stage.
+   */
+  if(1 != EVP_DecryptFinal_ex(ctx, plaintext + len, &len)) handleErrors();
+  plaintext_len += len;
+
+  
+  
+  /* Clean up */
+  EVP_CIPHER_CTX_free(ctx);
+
+  return plaintext_len;
+}
+
+
+int main (int argc, char** argv)
+{
+  /* Set up the key and iv. Do I need to say to not hard code these in a
+   * real application? :-)
+   */
+
+  int size_buf=1;
+  int lena=0;
+  int change=0;
+   
+  for(int i=1; i<argc; i++){
+    if(strncmp(argv[i],"nb",2)==0)    nb_test = atoi(&(argv[i][2]));    //nb of test         
+    if(strncmp(argv[i],"ctr",3)==0) ctr = atoi(&(argv[i][3]));          //CTR ? 1  otherwise CBC like
+    if(strncmp(argv[i],"sizebuf",7)==0) size_buf = atoi(&(argv[i][7]));          //SIZE of the buffer
+    if(strncmp(argv[i],"lena",4)==0) lena = atoi(&(argv[i][4]));          //Use Lena or buffer
+    if(strncmp(argv[i],"c",1)==0) change = atoi(&(argv[i][1]));          //Use Lena or buffer
+  }
+
+/*  printf("nb times %d\n",nb_test);
+  printf("ctr %d\n",ctr);
+  printf("lena %d\n",lena);
+  printf("size_buf %d\n",size_buf);
+*/
+
+
+
+  
+  /* A 256 bit key */
+//  unsigned char *key = (unsigned char *)"01234567890123456789012345678901";
+  unsigned char *key = (unsigned char *)"0123456789012345";
+  
+  /* A 128 bit IV */
+  unsigned char *iv = (unsigned char *)"0123456789012345";
+
+  /* Message to be encrypted */
+
+  /* Buffer for ciphertext. Ensure the buffer is long enough for the
+   * ciphertext which may be longer than the plaintext, dependant on the
+   * algorithm and mode
+   */
+
+  int width;
+  int height;
+  uchar *data_R, *data_G, *data_B;
+  int imsize;
+  uchar *buffer;
+
+
+  if(lena==1) {
+    load_RGB_pixmap("lena.ppm", &width, &height, &data_R, &data_G, &data_B);
+    imsize=width*height*3;
+//  load_RGB_pixmap("No_ecb_mode_picture.ppm", &width, &height, &data_R, &data_G, &data_B);
+  }
+  else {
+    width=size_buf;
+    height=size_buf;
+    imsize=width*height;
+    buffer=malloc(imsize*sizeof(uchar));
+    for(int i=0;i<imsize;i++) {
+      buffer[i]=lrand48();
+    }
+  }
+  
+
+
+  int oneD=width*height;
+  uchar *plaintext = malloc(imsize+1000);   //add that for cbc
+  if(lena) {
+    for(int i=0;i<oneD;i++) {
+      plaintext[i]=data_R[i];
+      plaintext[oneD+i]=data_G[i];
+      plaintext[2*oneD+i]=data_B[i];
+    }
+  }
+  else
+  {
+     for(int i=0;i<oneD;i++) {
+       plaintext[i]=buffer[i];
+    }
+  }
+
+   if(change==1) {
+    
+    plaintext[4]++;
+  }
+  if(change==2) {
+    
+    plaintext[9]++;
+  }
+
+
+  uchar *ciphertext = malloc(imsize+1000); //add that for cbc
+
+  /* Buffer for the decrypted text */
+  uchar *decryptedtext = malloc(imsize+1000); //add that for cbc
+
+  int decryptedtext_len, ciphertext_len;
+
+  /* Initialise the library */
+/*  ERR_load_crypto_strings();
+  OpenSSL_add_all_algorithms();
+  OPENSSL_config(NULL);
+*/
+
+
+  double time_encrypt=0;
+  double time_decrypt=0;
+  double t=TimeStart();
+
+  
+  /* Encrypt the plaintext */
+
+
+  int i;
+
+//  for(i=0;i<nb_test;i++)
+  {  
+    ciphertext_len = encrypt (plaintext, imsize, key, iv,
+                             ciphertext, ctr, i );
+  }
+
+ time_encrypt+=TimeStop(t);
+
+// printf("Time encrypt %f\n",time);
+ printf("%e\t",(double)imsize*nb_test/time_encrypt);
+
+ /*
+ if(lena) {
+   for(int i=0;i<oneD;i++) {
+     data_R[i]=ciphertext[i];
+     data_G[i]=ciphertext[oneD+i];
+     data_B[i]=ciphertext[2*oneD+i];
+   }
+   store_RGB_pixmap("lena2.ppm", data_R, data_G, data_B, width, height);
+ }
+ */
+/*  
+  t=0;
+  t=TimeStart();
+
+  //for(int i=0;i<nb_test;i++)
+  {  
+    // Decrypt the ciphertext 
+    decryptedtext_len = decrypt(ciphertext, ciphertext_len, key, iv,
+                               decryptedtext,ctr, i);
+  }
+
+ time_decrypt+=TimeStop(t);
+
+ //printf("Time decrypt %f\n",time);
+ printf("%f\t",(double)imsize*nb_test/time_decrypt);
+
+ if(lena) {
+   for(int i=0;i<oneD;i++) {
+     data_R[i]=decryptedtext[i];
+     data_G[i]=decryptedtext[oneD+i];
+     data_B[i]=decryptedtext[2*oneD+i];
+   }
+   store_RGB_pixmap("lena3.ppm", data_R, data_G, data_B, width, height);
+ }
+ else {
+   int equal=1;
+   for(int i=0;i<imsize;i++) {
+     //cout<<(int)buffer[i]<<endl;
+     if(buffer[i]!=decryptedtext[i]) {
+       equal=0;
+     }
+   }
+//   printf("RESULT CORRECT: %d\n",equal);
+ }
+*/  
+
+  /* Clean up */
+  EVP_cleanup();
+  ERR_free_strings();
+
+  return 0;
+}