--- /dev/null
+16 5.66879e+07 6.32751e+07 4.34782e+07 4.35805e+07
+64 5.67913e+07 6.35159e+07 5.84309e+07 5.90694e+07
+256 7.23767e+07 8.05653e+07 7.72996e+07 8.10041e+07
+1024 7.79429e+07 7.6415e+07 7.48536e+07 7.48749e+07
+4096 7.40293e+07 7.57209e+07 8.82828e+07 8.97135e+07
+16384 7.43974e+07 7.37092e+07 9.2685e+07 9.25186e+07
+65536 7.31245e+07 7.3218e+07 9.3094e+07 9.32349e+07
+262144 7.04172e+07 6.7518e+07 9.3279e+07 8.51331e+07
--- /dev/null
+16 3.68318e+07 4.13968e+07 2.66932e+07 2.66753e+07
+64 4.25331e+07 4.7772e+07 3.88638e+07 3.86598e+07
+256 4.26487e+07 4.44553e+07 5.0348e+07 5.05964e+07
+1024 4.24015e+07 4.16219e+07 4.69578e+07 4.70441e+07
+4096 4.22071e+07 4.17349e+07 5.48358e+07 5.58136e+07
+16384 3.94812e+07 3.92073e+07 5.27855e+07 5.34491e+07
+65536 3.77555e+07 3.83929e+07 5.07566e+07 5.05106e+07
+262144 3.53243e+07 3.46304e+07 4.63409e+07 4.63841e+07
--- /dev/null
+16 4.55723e+07 5.02363e+07 4.08291e+07 4.08425e+07
+64 5.76144e+07 5.82805e+07 5.82537e+07 5.82712e+07
+256 6.33836e+07 6.3561e+07 6.60558e+07 6.6528e+07
+1024 6.35835e+07 6.27783e+07 6.16723e+07 6.16699e+07
+4096 6.39329e+07 6.31225e+07 7.5684e+07 7.56906e+07
+16384 6.30963e+07 6.22959e+07 7.9681e+07 7.95176e+07
+65536 6.35231e+07 6.27698e+07 7.95896e+07 7.97394e+07
+262144 6.20935e+07 6.14682e+07 7.79731e+07 7.78615e+07
--- /dev/null
+16 24853009.422268 12073029.699382 24312060.119877 22712164.686998
+64 29239597.581647 21770893.460994 28834420.467964 27452341.069102
+256 28640940.011478 24345378.101055 29777684.534513 28019041.037202
+1024 28372088.498681 26600138.538540 30514757.151944 30254598.193300
+4096 27672973.807444 26390460.160040 30854932.730167 29810211.761870
+16384 27188968.272242 26364380.906928 29872238.408986 29781664.429377
+65536 26784903.402114 25893041.626707 29480177.539200 29574716.040163
+262144 26575001.832701 24080881.729320 28423938.509768 27758084.837318
--- /dev/null
+16 16791153.917088 7166899.517417 15342436.941025 14350554.461265
+64 21482019.036029 15499530.600630 19600081.760390 19159414.904503
+256 23145779.361132 20800666.494268 21050748.108604 20929153.180620
+1024 23578586.589173 22635041.957361 21442550.538866 21441465.305021
+4096 23664532.536590 23202538.069064 21546507.976138 21562038.213996
+16384 22383969.516085 21261219.295783 21375864.889570 21334721.496623
+65536 20757833.817459 19286820.253269 20895737.083164 20911120.059940
+262144 19210067.453547 18185192.365065 19332447.498296 19389623.604195
--- /dev/null
+16 18108628.460942 7968801.288301 16880245.846543 15685451.701793
+64 21730879.436960 15744707.504760 21190747.888969 20964161.415561
+256 22942914.090862 19033481.473887 23130254.948512 23008809.907361
+1024 23447171.003305 21871361.530630 25182896.331411 25200482.341492
+4096 23530217.444970 22562944.638518 25651938.888494 25768193.779253
+16384 23515431.878772 22762755.837213 25758988.446117 25852516.057349
+65536 23516062.688510 22773816.544906 25778722.005436 25906567.785661
+262144 23352506.138671 22090784.060962 25643566.009893 25506546.662715
--- /dev/null
+library("ggplot2")
+library(reshape2)
+
+setwd("~/work/Cipher_code/OneRoundIoT/")
+
+openrpi3=read.csv('execution_openssl_opi.txt',sep="\t",header=F)
+onerpi3=read.csv('execution_oneround_opi.txt',sep="\t",header=F)
+
+openrpi3=openrpi3[c(1,2,3,5)]
+onerpi3=onerpi3[c(2,3,5)]
+
+res=data.frame(openrpi3,onerpi3)
+names(res)=c("Buffer","OpenSSL enc CBC","OpenSSL dec CBC", "OpenSSL (en|de)c CTR", "OneRound enc DECB", "OneRound dec DECB", "OneRound (en|de)c CTR")
+
+
+
+
+
+df2 <- melt(data = res, id.vars = 1)
+
+names(df2)[2]="Legend"
+#names(df2)[3]="Accuracy"
+
+
+#g=ggplot(res, aes(iteration)) +
+# geom_line(aes(y = test, colour = "testing accuracy")) +
+# geom_line(aes(y = train, colour = "training accuracy"))+
+
+g=ggplot(data = df2, aes(x=Buffer, y=value)) + geom_line(aes(colour=Legend)) +
+ scale_x_continuous("Buffer size",trans="log10") +
+ scale_y_continuous("Bytes per second",trans="log10",breaks=seq(1e7,2e8,1e7))+
+ theme(legend.position="top")+
+ annotation_logticks()
+
+
+ggsave("execution_opi.pdf",width = 15, height = 10, units = "cm")
+
+print(g)
--- /dev/null
+library("ggplot2")
+library(reshape2)
+
+setwd("~/work/Cipher_code/OneRoundIoT/")
+
+openrpi3=read.csv('execution_openssl_rpi0.txt',sep="\t",header=F)
+onerpi3=read.csv('execution_oneround_rpi0.txt',sep="\t",header=F)
+
+openrpi3=openrpi3[c(1,2,3,5)]
+onerpi3=onerpi3[c(2,3,5)]
+
+res=data.frame(openrpi3,onerpi3)
+names(res)=c("Buffer","OpenSSL enc CBC","OpenSSL dec CBC", "OpenSSL (en|de)c CTR", "OneRound enc DECB", "OneRound dec DECB", "OneRound (en|de)c CTR")
+
+
+
+
+
+df2 <- melt(data = res, id.vars = 1)
+
+names(df2)[2]="Legend"
+#names(df2)[3]="Accuracy"
+
+
+#g=ggplot(res, aes(iteration)) +
+# geom_line(aes(y = test, colour = "testing accuracy")) +
+# geom_line(aes(y = train, colour = "training accuracy"))+
+
+g=ggplot(data = df2, aes(x=Buffer, y=value)) + geom_line(aes(colour=Legend)) +
+ scale_x_continuous("Buffer size",trans="log10") +
+ scale_y_continuous("Bytes per second",trans="log10",breaks=seq(1e7,2e8,1e7))+
+ theme(legend.position="top")+
+ annotation_logticks()
+
+
+ggsave("execution_rpi0.pdf",width = 15, height = 10, units = "cm")
+
+print(g)
--- /dev/null
+library("ggplot2")
+library(reshape2)
+
+setwd("~/work/Cipher_code/OneRoundIoT/")
+
+openrpi3=read.csv('execution_openssl_rpi2.txt',sep="\t",header=F)
+onerpi3=read.csv('execution_oneround_rpi2.txt',sep="\t",header=F)
+
+openrpi3=openrpi3[c(1,2,3,5)]
+onerpi3=onerpi3[c(2,3,5)]
+
+res=data.frame(openrpi3,onerpi3)
+names(res)=c("Buffer","OpenSSL enc CBC","OpenSSL dec CBC", "OpenSSL (en|de)c CTR", "OneRound enc DECB", "OneRound dec DECB", "OneRound (en|de)c CTR")
+
+
+
+
+
+df2 <- melt(data = res, id.vars = 1)
+
+names(df2)[2]="Legend"
+#names(df2)[3]="Accuracy"
+
+
+#g=ggplot(res, aes(iteration)) +
+# geom_line(aes(y = test, colour = "testing accuracy")) +
+# geom_line(aes(y = train, colour = "training accuracy"))+
+
+g=ggplot(data = df2, aes(x=Buffer, y=value)) + geom_line(aes(colour=Legend)) +
+ scale_x_continuous("Buffer size",trans="log10") +
+ scale_y_continuous("Bytes per second",trans="log10",breaks=seq(1e7,2e8,1e7))+
+ theme(legend.position="top")+
+ annotation_logticks()
+
+
+ggsave("execution_rpi2.pdf",width = 15, height = 10, units = "cm")
+
+print(g)
df2 <- melt(data = res, id.vars = 1)
-#names(df2)[2]="Legend"
+
+names(df2)[2]="Legend"
#names(df2)[3]="Accuracy"
# geom_line(aes(y = test, colour = "testing accuracy")) +
# geom_line(aes(y = train, colour = "training accuracy"))+
-g=ggplot(data = df2, aes(x=Buffer, y=value)) + geom_line(aes(colour=variable)) + scale_x_log10("Buffer size") +
- scale_y_log10("Bytes per second")+annotation_logticks(sides="trbl")
-#g <- ggplot(data = df2, aes(x = 1, y = 3, colour = 2)) + geom_line()+scale_color_manual(values=c("#888888", "#000000"))+
-#theme(legend.justification=c(1,0), legend.position=c(1,0))
+g=ggplot(data = df2, aes(x=Buffer, y=value)) + geom_line(aes(colour=Legend)) +
+ scale_x_continuous("Buffer size",trans="log10") +
+ scale_y_continuous("Bytes per second",trans="log10",breaks=seq(1e7,2e8,1e7))+
+ theme(legend.position="top")+
+ annotation_logticks()
+
+
ggsave("execution_rpi3.pdf",width = 15, height = 10, units = "cm")
print(g)