3 // /home/couturie/work/petsc-3.5.1/arch-linux2-c-debug/bin/mpirun -np 3 ex29 -da_grid_x 900 -da_grid_y 900
8 Concepts: KSP^solving a system of linear equations
9 Concepts: KSP^Laplacian, 2d
14 Added at the request of Marc Garbey.
16 Inhomogeneous Laplacian in 2D. Modeled by the partial differential equation
18 -div \rho grad u = f, 0 < x,y < 1,
22 f = e^{-x^2/\nu} e^{-y^2/\nu}
24 with Dirichlet boundary conditions
26 u = f(x,y) for x = 0, x = 1, y = 0, y = 1
28 or pure Neumman boundary conditions
30 This uses multigrid to solve the linear system
33 static char help[] = "Solves 2D inhomogeneous Laplacian using multigrid.\n\n";
36 #include <petscdmda.h>
39 extern PetscErrorCode ComputeMatrix(KSP,Mat,Mat,void*);
40 extern PetscErrorCode ComputeRHS(KSP,Vec,void*);
42 typedef enum {DIRICHLET, NEUMANN} BCType;
51 #define __FUNCT__ "main"
61 int KrylovMinimize(Mat A, Vec b, Vec x) {
66 PetscScalar gamma, alpha, oldgamma, beta;
67 PetscReal norm=20, Eprecision=1e-5, cgprec=1e-40;
68 PetscInt giter=0, ColS=12, col=0, Emaxiter=50000000, iter=0, iterations=15, Iiter=0;
80 Vec Alpha, p, ss, vect, r, q, Ax;
85 ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
86 ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);
87 ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
94 ierr = PetscPrintf(PETSC_COMM_WORLD, "Size of vector %D\n", size); CHKERRQ(ierr);
97 MatGetOwnershipRange(A,&aa,&bb);
99 // ierr = PetscSynchronizedPrintf(PETSC_COMM_WORLD, "%D %D\n", aa,bb); CHKERRQ(ierr);
100 //PetscSynchronizedFlush(PETSC_COMM_WORLD);
103 ierr = MatCreate(PETSC_COMM_WORLD, &S);CHKERRQ(ierr);
104 ierr = MatSetSizes(S, bb-aa, PETSC_DECIDE, size, ColS); CHKERRQ(ierr);
105 ierr = MatSetType(S, MATMPIDENSE); CHKERRQ(ierr);
106 ierr = MatSetUp(S); CHKERRQ(ierr);
108 ierr = MatGetOwnershipRange(S, &Istart, &Iend); CHKERRQ(ierr);
110 ierr = VecCreate(PETSC_COMM_WORLD, &Alpha); CHKERRQ(ierr);
111 ierr = VecSetSizes(Alpha, PETSC_DECIDE, ColS); CHKERRQ(ierr);
112 ierr = VecSetFromOptions(Alpha); CHKERRQ(ierr);
113 ierr = VecDuplicate(Alpha, &vect); CHKERRQ(ierr);
114 ierr = VecDuplicate(Alpha, &p); CHKERRQ(ierr);
115 ierr = VecDuplicate(Alpha, &ss); CHKERRQ(ierr);
116 ierr = VecDuplicate(b, &r); CHKERRQ(ierr);
117 ierr = VecDuplicate(b, &q); CHKERRQ(ierr);
118 ierr = VecDuplicate(b, &Ax); CHKERRQ(ierr);
120 ierr = VecDuplicate(b,&x_old);CHKERRQ(ierr);
121 ierr = VecDuplicate(b,&residu);CHKERRQ(ierr);
125 //indexes of row (these indexes are global)
126 ind_row = (PetscInt*)malloc(sizeof(PetscInt)*(Iend-Istart));
127 for(i=0; i<Iend-Istart; i++) ind_row[i] = i + Istart;
130 // ierr = KSPGMRESSetRestart(ksp, 16); CHKERRQ(ierr);
131 ierr = KSPSetTolerances(ksp, 1e-10, 1e-10, PETSC_DEFAULT, 16); CHKERRQ(ierr);
132 ierr = KSPSetInitialGuessNonzero(ksp, PETSC_TRUE); CHKERRQ(ierr);
136 //GMRES WITH MINIMIZATION
138 while(giter<Emaxiter && norm>Eprecision ){
139 for(col=0; col<ColS && norm>Eprecision; col++){
143 ierr = KSPSolve(ksp, b, x); CHKERRQ(ierr);
145 ierr = KSPGetIterationNumber(ksp, &its); CHKERRQ(ierr);
146 total += its; Iiter ++;
151 ierr = VecGetArray(x, &array);
152 ierr = MatSetValues(S, Iend-Istart, ind_row, 1, &col, array, INSERT_VALUES);
153 VecRestoreArray(x, &array);
158 ierr = VecCopy(x, residu); CHKERRQ(ierr);
159 ierr = VecAXPY(residu, -1, x_old); CHKERRQ(ierr);
160 ierr = VecNorm(residu, NORM_INFINITY, &norm); CHKERRQ(ierr);
164 ierr = PetscPrintf(PETSC_COMM_WORLD, "Norm of error %g, outer iteration %D\n", norm, giter); CHKERRQ(ierr);
165 ierr = VecCopy(x, x_old); CHKERRQ(ierr);
172 if( norm>Eprecision) {
174 MatAssemblyBegin(S, MAT_FINAL_ASSEMBLY);
175 MatAssemblyEnd(S, MAT_FINAL_ASSEMBLY);
180 MatMatMult(A,S, MAT_INITIAL_MATRIX,PETSC_DEFAULT,&AS);
184 MatMatMult(A,S, MAT_REUSE_MATRIX,PETSC_DEFAULT,&AS);
189 //Minimization with CGLS
190 MatMult(AS, Alpha, r); VecAYPX(r, -1, b); //r_0 = b-AS*x_0
193 MatMultTranspose(AS, r, p); //p_0 = AS'*r_0
198 ierr = VecCopy(p, ss); CHKERRQ(ierr); //p_0 = s_0
199 VecNorm(ss, NORM_2, &gamma); gamma = gamma * gamma; //gamma = norm2(s)^2
200 while(gamma>cgprec && iter<iterations){
201 MatMult(AS, p, q); //q = AS*p
202 VecNorm(q, NORM_2, &alpha); alpha = alpha * alpha; //alpha = norm2(q)^2
203 alpha = gamma / alpha;
204 VecAXPY(Alpha, alpha, p); //Alpha += alpha*p
205 VecAXPY(r, -alpha, q); //r -= alpha*q
206 MatMultTranspose(AS, r, ss); // ss = AS'*r
208 VecNorm(ss, NORM_2, &gamma); gamma = gamma * gamma; //gamma = norm2(s)^2
209 beta = gamma / oldgamma;
210 VecAYPX(p, beta, ss); //p = s+beta*p;
216 MatMult(S, Alpha, x); //x = S*Alpha;
221 ierr = PetscPrintf(PETSC_COMM_WORLD, "\t\t\t -- Execution time : %g (s)\n", T2-T1); CHKERRQ(ierr);
222 ierr = PetscPrintf(PETSC_COMM_WORLD, "\t\t\t -- Total number of iterations : %D\n", total); CHKERRQ(ierr);
236 int KrylovMinimizeLSQR(Mat A, Vec b, Vec x) {
241 PetscScalar alpha, beta;
242 PetscReal norm=20, Eprecision=1e-5, tol=1e-40;
243 PetscInt giter=0, ColS=12, col=0, Emaxiter=50000000, iter=0, iterations=15, Iiter=0;
249 PetscInt Istart,Iend;
256 PetscScalar norm_ksp;
257 Vec u,v,d,uu,vt,zero_long,zero_short,x_lsqr;
261 ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
262 ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);
263 ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
270 ierr = PetscPrintf(PETSC_COMM_WORLD, "Size of vector %D\n", size); CHKERRQ(ierr);
273 MatGetOwnershipRange(A,&aa,&bb);
275 // ierr = PetscSynchronizedPrintf(PETSC_COMM_WORLD, "%D %D\n", aa,bb); CHKERRQ(ierr);
276 //PetscSynchronizedFlush(PETSC_COMM_WORLD);
279 ierr = MatCreate(PETSC_COMM_WORLD, &S);CHKERRQ(ierr);
280 ierr = MatSetSizes(S, bb-aa, PETSC_DECIDE, size, ColS); CHKERRQ(ierr);
281 ierr = MatSetType(S, MATMPIDENSE); CHKERRQ(ierr);
282 ierr = MatSetUp(S); CHKERRQ(ierr);
284 ierr = MatGetOwnershipRange(S, &Istart, &Iend); CHKERRQ(ierr);
288 ierr = VecDuplicate(b, &Ax); CHKERRQ(ierr);
290 ierr = VecDuplicate(b,&x_old);CHKERRQ(ierr);
291 ierr = VecDuplicate(b,&residu);CHKERRQ(ierr);
295 ierr = VecDuplicate(b,&u);CHKERRQ(ierr);
298 ierr = VecDuplicate(b,&uu);CHKERRQ(ierr);
299 ierr = VecDuplicate(b,&zero_long);CHKERRQ(ierr);
300 ierr = VecSet(zero_long,0);CHKERRQ(ierr);
303 ierr = VecCreate(PETSC_COMM_WORLD, &v); CHKERRQ(ierr);
304 ierr = VecSetSizes(v, PETSC_DECIDE, ColS); CHKERRQ(ierr);
305 ierr = VecSetFromOptions(v); CHKERRQ(ierr);
306 ierr = VecDuplicate(v,&zero_short);CHKERRQ(ierr);
307 ierr = VecSet(zero_short,0);CHKERRQ(ierr);
308 ierr = VecDuplicate(v,&d);CHKERRQ(ierr);
309 ierr = VecDuplicate(v,&vt);CHKERRQ(ierr);
310 ierr = VecDuplicate(v,&x_lsqr);CHKERRQ(ierr);
313 //indexes of row (these indexes are global)
314 ind_row = (PetscInt*)malloc(sizeof(PetscInt)*(Iend-Istart));
315 for(i=0; i<Iend-Istart; i++) ind_row[i] = i + Istart;
318 // ierr = KSPGMRESSetRestart(ksp, 16); CHKERRQ(ierr);
319 ierr = KSPSetTolerances(ksp, 1e-10, 1e-10, PETSC_DEFAULT, 16); CHKERRQ(ierr);
320 ierr = KSPSetInitialGuessNonzero(ksp, PETSC_TRUE); CHKERRQ(ierr);
325 //GMRES WITH MINIMIZATION
327 while(giter<Emaxiter && norm>Eprecision ){
328 for(col=0; col<ColS && norm>Eprecision; col++){
332 ierr = KSPSolve(ksp, b, x); CHKERRQ(ierr);
334 ierr = KSPGetIterationNumber(ksp, &its); CHKERRQ(ierr);
335 total += its; Iiter ++;
340 ierr = VecGetArray(x, &array);
341 ierr = MatSetValues(S, Iend-Istart, ind_row, 1, &col, array, INSERT_VALUES);
342 VecRestoreArray(x, &array);
347 ierr = VecCopy(x, residu); CHKERRQ(ierr);
348 ierr = VecAXPY(residu, -1, x_old); CHKERRQ(ierr);
349 ierr = VecNorm(residu, NORM_INFINITY, &norm); CHKERRQ(ierr);
353 ierr = PetscPrintf(PETSC_COMM_WORLD, "Norm of error %g, outer iteration %D\n", norm, giter); CHKERRQ(ierr);
354 ierr = VecCopy(x, x_old); CHKERRQ(ierr);
361 if( norm>Eprecision) {
363 MatAssemblyBegin(S, MAT_FINAL_ASSEMBLY);
364 MatAssemblyEnd(S, MAT_FINAL_ASSEMBLY);
371 MatMatMult(A,S, MAT_INITIAL_MATRIX,PETSC_DEFAULT,&AS);
376 MatMatMult(A,S, MAT_REUSE_MATRIX,PETSC_DEFAULT,&AS);
388 PetscScalar n2b,tolb,normr,c,s,phibar,normar,norma,thet,rhot,rho,phi;
391 VecNorm(b, NORM_2, &n2b); //n2b = norm(b);
392 ierr = VecCopy(b, u); CHKERRQ(ierr); //u=b
393 VecNorm(u, NORM_2, &beta); // beta=norm(u)
396 VecAYPX(u,1/beta,zero_long); // u = u / beta;
401 MatMultTranspose(AS, u, v); //v=A'*u
402 ierr = VecSet(x_lsqr,0);CHKERRQ(ierr);
403 VecNorm(v, NORM_2, &alpha); // alpha=norm(v)
405 VecAYPX(v,1/alpha,zero_short); // v = v / alpha;
407 ierr = VecSet(d,0);CHKERRQ(ierr);
408 normar = alpha * beta;
411 for(i=0;i<iterations;i++) {
412 MatMult(AS, v, uu); //uu=A*v
413 VecAYPX(u, -alpha, uu); //u = uu-alpha*u;
414 VecNorm(u, NORM_2, &beta); // beta=norm(u)
415 VecAYPX(u,1/beta,zero_long); // u = u / beta;
416 norma=sqrt(norma*norma+alpha*alpha+beta*beta); // norma = norm([norma alpha beta]);
419 rho = sqrt(rhot*rhot + beta*beta);
423 if (phi == 0) { // stagnation of the method
427 VecAYPX(d,-thet,v); //d = (v - thet * d);
428 VecAYPX(d,1/rho,zero_short); //d=d/ rho;
431 if (normar/(norma*normr) <= tol) { // check for convergence in min{|b-A*x|}
434 if (normr <= tolb) { // check for convergence in A*x=b
439 VecAXPY(x_lsqr,phi,d); // x_lsqr=x_lsqr+phi*d
440 normr = abs(s) * normr;
441 MatMultTranspose(AS, u, vt); //vt=A'*u;
442 VecAYPX(v,-beta,vt); // v = vt - beta * v;
443 VecNorm(v, NORM_2, &alpha); // alpha=norm(v)
444 VecAYPX(v,1/alpha,zero_short); // v = v / alpha;
445 normar = alpha * abs( s * phi);
452 MatMult(S, x_lsqr, x); //x = S*x_small;
457 ierr = PetscPrintf(PETSC_COMM_WORLD, "\t\t\t -- Execution time LSQR : %g (s)\n", T2-T1); CHKERRQ(ierr);
458 ierr = PetscPrintf(PETSC_COMM_WORLD, "\t\t\t -- Total number of iterations LSQR : %D\n", total); CHKERRQ(ierr);
470 int main(int argc,char **argv)
475 const char *bcTypes[2] = {"dirichlet","neumann"};
480 PetscScalar T1,T2,norm;
484 PetscInitialize(&argc,&argv,(char*)0,help);
486 ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
487 ierr = DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,-3,-3,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,&da);CHKERRQ(ierr);
488 ierr = DMDASetUniformCoordinates(da,0,1,0,1,0,0);CHKERRQ(ierr);
489 ierr = DMDASetFieldName(da,0,"Pressure");CHKERRQ(ierr);
491 ierr = PetscOptionsBegin(PETSC_COMM_WORLD, "", "Options for the inhomogeneous Poisson equation", "DMqq");
493 ierr = PetscOptionsReal("-rho", "The conductivity", "ex29.c", user.rho, &user.rho, NULL);CHKERRQ(ierr);
495 ierr = PetscOptionsReal("-nu", "The width of the Gaussian source", "ex29.c", user.nu, &user.nu, NULL);CHKERRQ(ierr);
496 bc = (PetscInt)DIRICHLET;
497 ierr = PetscOptionsEList("-bc_type","Type of boundary condition","ex29.c",bcTypes,2,bcTypes[0],&bc,NULL);CHKERRQ(ierr);
498 user.bcType = (BCType)bc;
499 ierr = PetscOptionsEnd();
501 ierr = KSPSetComputeRHS(ksp,ComputeRHS,&user);CHKERRQ(ierr);
502 ierr = KSPSetComputeOperators(ksp,ComputeMatrix,&user);CHKERRQ(ierr);
503 ierr = KSPSetDM(ksp,da);CHKERRQ(ierr);
504 ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
505 ierr = KSPSetUp(ksp);CHKERRQ(ierr);
507 ierr = KSPSetTolerances(ksp, 1e-5, 1e-5, PETSC_DEFAULT, 50000000); CHKERRQ(ierr);
509 ierr = KSPSolve(ksp,NULL,NULL);CHKERRQ(ierr);
514 ierr = KSPGetSolution(ksp,&x);CHKERRQ(ierr);
515 ierr = KSPGetRhs(ksp,&b);CHKERRQ(ierr);
516 KSPGetOperators(ksp,&A,NULL);
518 VecDuplicate(x,&sol);
521 VecNorm(sol, NORM_2, &norm);
522 ierr = PetscPrintf(PETSC_COMM_WORLD, "Error %g\n",norm);
523 ierr = PetscPrintf(PETSC_COMM_WORLD, "\t\t\t -- Execution time : %g (s)\n", T2-T1); CHKERRQ(ierr);
525 ierr = KSPGetIterationNumber(ksp, &total); CHKERRQ(ierr);
526 ierr = PetscPrintf(PETSC_COMM_WORLD, "\t\t\t -- Total number of iterations : %D\n", total); CHKERRQ(ierr);
533 KrylovMinimize(A, b, x);
541 VecNorm(sol, NORM_2, &norm);
542 ierr = PetscPrintf(PETSC_COMM_WORLD, "Error2 %g\n",norm);
552 KrylovMinimizeLSQR(A, b, x);
560 VecNorm(sol, NORM_2, &norm);
561 ierr = PetscPrintf(PETSC_COMM_WORLD, "Error LSQR %g\n",norm);
568 ierr = DMDestroy(&da);CHKERRQ(ierr);
569 ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
570 ierr = PetscFinalize();
576 #define __FUNCT__ "ComputeRHS"
577 PetscErrorCode ComputeRHS(KSP ksp,Vec b,void *ctx)
579 UserContext *user = (UserContext*)ctx;
581 PetscInt i,j,mx,my,xm,ym,xs,ys;
586 PetscFunctionBeginUser;
587 ierr = KSPGetDM(ksp,&da);CHKERRQ(ierr);
588 ierr = DMDAGetInfo(da, 0, &mx, &my, 0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr);
589 Hx = 1.0 / (PetscReal)(mx-1);
590 Hy = 1.0 / (PetscReal)(my-1);
591 ierr = DMDAGetCorners(da,&xs,&ys,0,&xm,&ym,0);CHKERRQ(ierr);
592 ierr = DMDAVecGetArray(da, b, &array);CHKERRQ(ierr);
593 for (j=ys; j<ys+ym; j++) {
594 for (i=xs; i<xs+xm; i++) {
595 array[j][i] = PetscExpScalar(-((PetscReal)i*Hx)*((PetscReal)i*Hx)/user->nu)*PetscExpScalar(-((PetscReal)j*Hy)*((PetscReal)j*Hy)/user->nu)*Hx*Hy;
598 ierr = DMDAVecRestoreArray(da, b, &array);CHKERRQ(ierr);
599 ierr = VecAssemblyBegin(b);CHKERRQ(ierr);
600 ierr = VecAssemblyEnd(b);CHKERRQ(ierr);
602 /* force right hand side to be consistent for singular matrix */
603 /* note this is really a hack, normally the model would provide you with a consistent right handside */
604 if (user->bcType == NEUMANN) {
605 MatNullSpace nullspace;
607 ierr = MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,0,&nullspace);CHKERRQ(ierr);
608 ierr = MatNullSpaceRemove(nullspace,b);CHKERRQ(ierr);
609 ierr = MatNullSpaceDestroy(&nullspace);CHKERRQ(ierr);
611 PetscFunctionReturn(0);
616 #define __FUNCT__ "ComputeRho"
617 PetscErrorCode ComputeRho(PetscInt i, PetscInt j, PetscInt mx, PetscInt my, PetscReal centerRho, PetscReal *rho)
619 PetscFunctionBeginUser;
620 if ((i > mx/3.0) && (i < 2.0*mx/3.0) && (j > my/3.0) && (j < 2.0*my/3.0)) {
625 PetscFunctionReturn(0);
629 #define __FUNCT__ "ComputeMatrix"
630 PetscErrorCode ComputeMatrix(KSP ksp,Mat J,Mat jac,void *ctx)
632 UserContext *user = (UserContext*)ctx;
635 PetscInt i,j,mx,my,xm,ym,xs,ys;
637 PetscReal Hx,Hy,HydHx,HxdHy,rho;
638 MatStencil row, col[5];
641 PetscFunctionBeginUser;
642 ierr = KSPGetDM(ksp,&da);CHKERRQ(ierr);
643 centerRho = user->rho;
644 ierr = DMDAGetInfo(da,0,&mx,&my,0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr);
645 Hx = 1.0 / (PetscReal)(mx-1);
646 Hy = 1.0 / (PetscReal)(my-1);
649 ierr = DMDAGetCorners(da,&xs,&ys,0,&xm,&ym,0);CHKERRQ(ierr);
650 for (j=ys; j<ys+ym; j++) {
651 for (i=xs; i<xs+xm; i++) {
652 row.i = i; row.j = j;
653 ierr = ComputeRho(i, j, mx, my, centerRho, &rho);CHKERRQ(ierr);
654 if (i==0 || j==0 || i==mx-1 || j==my-1) {
655 if (user->bcType == DIRICHLET) {
656 v[0] = 2.0*rho*(HxdHy + HydHx);
657 ierr = MatSetValuesStencil(jac,1,&row,1,&row,v,INSERT_VALUES);CHKERRQ(ierr);
658 } else if (user->bcType == NEUMANN) {
659 PetscInt numx = 0, numy = 0, num = 0;
661 v[num] = -rho*HxdHy; col[num].i = i; col[num].j = j-1;
665 v[num] = -rho*HydHx; col[num].i = i-1; col[num].j = j;
669 v[num] = -rho*HydHx; col[num].i = i+1; col[num].j = j;
673 v[num] = -rho*HxdHy; col[num].i = i; col[num].j = j+1;
676 v[num] = numx*rho*HydHx + numy*rho*HxdHy; col[num].i = i; col[num].j = j;
678 ierr = MatSetValuesStencil(jac,1,&row,num,col,v,INSERT_VALUES);CHKERRQ(ierr);
681 v[0] = -rho*HxdHy; col[0].i = i; col[0].j = j-1;
682 v[1] = -rho*HydHx; col[1].i = i-1; col[1].j = j;
683 v[2] = 2.0*rho*(HxdHy + HydHx); col[2].i = i; col[2].j = j;
684 v[3] = -rho*HydHx; col[3].i = i+1; col[3].j = j;
685 v[4] = -rho*HxdHy; col[4].i = i; col[4].j = j+1;
686 ierr = MatSetValuesStencil(jac,1,&row,5,col,v,INSERT_VALUES);CHKERRQ(ierr);
690 ierr = MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
691 ierr = MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
692 if (user->bcType == NEUMANN) {
693 MatNullSpace nullspace;
695 ierr = MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,0,&nullspace);CHKERRQ(ierr);
696 ierr = MatSetNullSpace(jac,nullspace);CHKERRQ(ierr);
697 ierr = MatNullSpaceDestroy(&nullspace);CHKERRQ(ierr);
699 PetscFunctionReturn(0);