In order to see the influence of our algorithm with only one processor, we first
show a comparison with the standard version of GMRES and our algorithm. In
table~\ref{tab:01}, we show the matrices we have used and some of them
-characteristics.
+characteristics. For all the matrices, the name, the field, the number of rows
+and the number of nonzero elements is given.
\begin{table}
\begin{center}
\end{center}
\end{table}
-
+In table~\ref{tab:02}, some experiments comparing the sovling of the linear
+systems obtained with the previous matrices with a GMRES variant and with out 2
+stage algorithm are given. In the second column, it can be noticed that either
+gmres or fgmres is used to solve the linear system. According to the matrices,
+different preconditioner is used. With the 2 stage algorithm, the same
+solver and the same preconditionner is used.
\begin{table}
& precond & Time & \# Iter. & Time & \# Iter. \\\hline \hline
crashbasis & gmres / none & 15.65 & 518 & 14.12 & 450 \\
-parabolic\_fem & gmres / ilu & 2152 & ?? & 724 & ?? \\
+parabolic\_fem & gmres / ilu & 1009.94 & 7573 & 401.52 & 2970 \\
epb3 & fgmres / sor & 8.67 & 600 & 8.21 & 540 \\
atmosmodj & fgmres / sor & 104.23 & 451 & 88.97 & 366 \\
bfwa398 & gmres / none & 1.42 & 9612 & 0.28 & 1650 \\