]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fezlkjfldsjk
[GMRES2stage.git] / paper.tex
index 01dc6cc82a2d072572645a43da2d760e944df393..693edaea3e4f8ca187c09bb5d47b9eb9cc86e592 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -623,7 +623,7 @@ cases depends quite critically on  the $m$ value~\cite{Huang89}. Therefore in
 most cases, a preconditioning technique is applied to the restarted GMRES method
 in order to improve its convergence.
 
-To enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has for instance proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However in practice the good preconditioners are those based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores.  
+To enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has for instance proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, leading to the so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process is referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However, in practice, good preconditioners are those based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores.  
 
 Recently, communication-avoiding methods have been developed to reduce the communication overheads in Krylov subspace iterative solvers. On modern computer architectures, communications between processors are much slower than floating-point arithmetic operations on a given processor. Communication-avoiding techniques reduce either communications between processors or data movements between levels of the memory hierarchy, by reformulating the communication-bound kernels (more frequently SpMV kernels) and the orthogonalization operations within the Krylov iterative solver. Different works have studied the communication-avoiding techniques for the GMRES method, so-called CA-GMRES, on multicore processors and multi-GPU machines~\cite{Mohiyuddin2009,Hoemmen2010,Yamazaki2014}. 
 
@@ -705,7 +705,7 @@ method. Moreover,  a tolerance  threshold must be  specified for the  solver. In
 practice, this threshold must be  much smaller than the convergence threshold of
 the TSIRM  algorithm (\emph{i.e.},  $\epsilon_{tsirm}$).  We also  consider that
 after  the call of  the $Solve$  function, we  obtain the  vector $x_k$  and the
-$error$ which is defined by $||Ax_k-b||_2$.
+$error$, which is defined by $||Ax_k-b||_2$.
 
   Line~\ref{algo:store},  $S_{k \mod  s}=x_k$ consists  in copying  the solution
   $x_k$ into the  column $k \mod s$ of $S$.  After  the minimization, the matrix