]> AND Private Git Repository - GMRES2stage.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
authorraphael couturier <couturie@extinction>
Fri, 10 Oct 2014 09:31:47 +0000 (11:31 +0200)
committerraphael couturier <couturie@extinction>
Fri, 10 Oct 2014 09:31:47 +0000 (11:31 +0200)
paper.tex

index e3d19ec0d604e10229be70a5643a4b4c08aeb92b..fe7fa3952ac90a99424b026e688b0cb5b2d13ac7 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -425,16 +425,17 @@ Email: lilia.ziane@inria.fr}
 
 
 \begin{abstract}
 
 
 \begin{abstract}
-In  this article,  a  two-stage  iterative algorithm is proposed to improve  the
-convergence of Krylov based iterative methods,  typically those of GMRES variants. The
-principle of  the proposed approach  is to  build an external  iteration over  the Krylov
-method, and to  frequently store its current  residual   (at  each
-GMRES restart for instance). After a given number of outer iterations, a minimization
-step  is applied  on the  matrix composed by the  saved residuals,  in  order to
-compute a better solution and to make  new iterations if required.  It is proven that
-the proposal has  the same convergence properties than the  inner embedded method itself. 
-Experiments using up  to 16,394 cores also show that the proposed algorithm
-runs around 5 or 7 times faster than GMRES.
+In  this article, a  two-stage iterative  algorithm is  proposed to  improve the
+convergence  of  Krylov  based  iterative  methods,  typically  those  of  GMRES
+variants.  The  principle of  the  proposed approach  is  to  build an  external
+iteration over the  Krylov method, and to frequently  store its current residual
+(at each GMRES restart for instance).  After a given number of outer iterations,
+a least-squares minimization step is applied on the matrix composed by the saved
+residuals, in order  to compute a better solution and to  make new iterations if
+required.  It  is proven that the  proposal has the  same convergence properties
+than the  inner embedded  method itself.  Experiments  using up to  16,394 cores
+also  show that the  proposed algorithm  runs around  5 or  7 times  faster than
+GMRES.
 \end{abstract}
 
 \begin{IEEEkeywords}
 \end{abstract}
 
 \begin{IEEEkeywords}