]> AND Private Git Repository - GMRES2stage.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
10-10-2014 08
authorlilia <lilia@agora>
Fri, 10 Oct 2014 10:48:09 +0000 (12:48 +0200)
committerlilia <lilia@agora>
Fri, 10 Oct 2014 10:48:09 +0000 (12:48 +0200)
paper.tex

index b0ec8513cbcb5e86bbe545c64e7c8d2c16998cf3..14ad53c69ff163b91fa556bc879b198fa230e989 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -648,15 +648,15 @@ appropriate than a single direct method in a parallel context.
 \begin{algorithmic}[1]
   \Input $A$ (sparse matrix), $b$ (right-hand side)
   \Output $x$ (solution vector)\vspace{0.2cm}
-  \State Set the initial guess $x^0$
+  \State Set the initial guess $x_0$
   \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv}
-    \State  $x^k=Solve(A,b,x^{k-1},max\_iter_{kryl})$   \label{algo:solve}
+    \State  $x_k=Solve(A,b,x_{k-1},max\_iter_{kryl})$   \label{algo:solve}
     \State retrieve error
-    \State $S_{k \mod s}=x^k$ \label{algo:store}
+    \State $S_{k \mod s}=x_k$ \label{algo:store}
     \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$}
       \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul}
-            \State $\alpha=Solve\_Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:}
-      \State $x^k=S\alpha$  \Comment{compute new solution}
+            \State $\alpha=Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:}
+      \State $x_k=S\alpha$  \Comment{compute new solution}
     \EndIf
   \EndFor
 \end{algorithmic}