-In Algorithm~\ref{algo:02} we remind the CGLS algorithm. The LSQR method follows\r
-more or less the same principle but it takes more place, so we briefly explain\r
-the parallelization of CGLS which is similar to LSQR.\r
-\r
-\begin{algorithm}[t]\r
-\caption{CGLS}\r
-\begin{algorithmic}[1]\r
- \Input $A$ (matrix), $b$ (right-hand side)\r
- \Output $x$ (solution vector)\vspace{0.2cm}\r
- \State Let $x_0$ be an initial approximation\r
- \State $r_0=b-Ax_0$\r
- \State $p_1=A^Tr_0$\r
- \State $s_0=p_1$\r
- \State $\gamma=||s_0||^2_2$\r
- \For {$k=1,2,3,\ldots$ until convergence ($\gamma<\epsilon_{ls}$)} \label{algo2:conv}\r
- \State $q_k=Ap_k$\r
- \State $\alpha_k=\gamma/||q_k||^2_2$\r
- \State $x_k=x_{k-1}+\alpha_kp_k$\r
- \State $r_k=r_{k-1}-\alpha_kq_k$\r
- \State $s_k=A^Tr_k$\r
- \State $\gamma_{old}=\gamma$\r
- \State $\gamma=||s_k||^2_2$\r
- \State $\beta_k=\gamma/\gamma_{old}$\r
- \State $p_{k+1}=s_k+\beta_kp_k$\r
- \EndFor\r
-\end{algorithmic}\r
-\label{algo:02}\r
-\end{algorithm}\r
+%% In Algorithm~\ref{algo:02} we remind the CGLS algorithm. The LSQR method follows\r
+%% more or less the same principle but it takes more place, so we briefly explain\r
+%% the parallelization of CGLS which is similar to LSQR.\r
+\r
+%% \begin{algorithm}[t]\r
+%% \caption{CGLS}\r
+%% \begin{algorithmic}[1]\r
+%% \Input $A$ (matrix), $b$ (right-hand side)\r
+%% \Output $x$ (solution vector)\vspace{0.2cm}\r
+%% \State Let $x_0$ be an initial approximation\r
+%% \State $r_0=b-Ax_0$\r
+%% \State $p_1=A^Tr_0$\r
+%% \State $s_0=p_1$\r
+%% \State $\gamma=||s_0||^2_2$\r
+%% \For {$k=1,2,3,\ldots$ until convergence ($\gamma<\epsilon_{ls}$)} \label{algo2:conv}\r
+%% \State $q_k=Ap_k$\r
+%% \State $\alpha_k=\gamma/||q_k||^2_2$\r
+%% \State $x_k=x_{k-1}+\alpha_kp_k$\r
+%% \State $r_k=r_{k-1}-\alpha_kq_k$\r
+%% \State $s_k=A^Tr_k$\r
+%% \State $\gamma_{old}=\gamma$\r
+%% \State $\gamma=||s_k||^2_2$\r
+%% \State $\beta_k=\gamma/\gamma_{old}$\r
+%% \State $p_{k+1}=s_k+\beta_kp_k$\r
+%% \EndFor\r
+%% \end{algorithmic}\r
+%% \label{algo:02}\r
+%% \end{algorithm}\r