+
+In order to see the influence of our algorithm with only one processor, we first
+show a comparison with the standard version of GMRES and our algorithm. In
+table~\ref{tab:01}, we show the matrices we have used and some of them
+characteristics.
+
+\begin{table}
+\begin{center}
+\begin{tabular}{|c|c|r|r|r|}
+\hline
+Matrix name & Field &\# Rows & \# Nonzeros \\\hline \hline
+crashbasis & Optimization & 160,000 & 1,750,416 \\
+parabolic\_fem & Computational fluid dynamics & 525,825 & 2,100,225 \\
+epb3 & Thermal problem & 84,617 & 463,625 \\
+atmosmodj & Computational fluid dynamics & 1,270,432 & 8,814,880 \\
+bfwa398 & Electromagnetics problem & 398 & 3,678 \\
+torso3 & 2D/3D problem & 259,156 & 4,429,042 \\
+\hline
+
+\end{tabular}
+\caption{Main characteristics of the sparse matrices chosen from the Davis collection}
+\label{tab:01}
+\end{center}
+\end{table}
+
+
+
+
+%% \begin{table}
+%% \begin{center}
+%% \begin{tabular}{|c|c|r|r|r|}
+%% \hline
+
+%% Matrix name & GMRES version &\# Rows & \# Nonzeros \\\hline \hline
+
+%% crashbasis & GMRES & Optimization & 160,000 & 1,750,416 \\
+%% parabolic\_fem & & Computational fluid dynamics & 525,825 & 2,100,225 \\
+%% epb3 & & Thermal problem & 84,617 & 463,625 \\
+%% atmosmodj & Computational fluid dynamics & 1,270,432 & 8,814,880 \\
+%% bfwa398 & Electromagnetics problem & 398 & 3,678 \\
+%% torso3 & 2D/3D problem & 259,156 & 4,429,042 \\
+%% \hline
+
+%% \end{tabular}
+%% \caption{Comparison of GMRES and 2 stage GMRES algorithms in sequential with some matrices}
+%% \label{tab:01}
+%% \end{center}
+%% \end{table}
+
+