Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/GMRES2stage
We can now claim that,
\begin{proposition}
-If $A$ is a positive real matrix, then the TSIRM algorithm is convergent.
+If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent.
\end{proposition}
\begin{proof}
$k$-th iterate of TSIRM.
We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
-
+Each step of the TSIRM algorithm
\end{proof}
%%%*********************************************************