]> AND Private Git Repository - GMRES_For_Journal.git/blob - GMRES_Journal.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
a4a026adef83ca556aee81f8b7641b40dc7f5795
[GMRES_For_Journal.git] / GMRES_Journal.tex
1 \documentclass[11pt]{article}
2 %\documentclass{acmconf}
3
4 \usepackage[paper=a4paper,dvips,top=1.5cm,left=1.5cm,right=1.5cm,foot=1cm,bottom=1.5cm]{geometry}
5 \usepackage{times}
6 \usepackage{graphicx}
7 \usepackage{amsmath}
8 \usepackage{amsfonts}
9 \usepackage{amssymb}
10 \usepackage{amsthm}
11 \usepackage{amsopn}
12 \usepackage{xspace}
13 \usepackage{array}
14 \usepackage{epsfig}
15 \usepackage{algorithmic}
16 \usepackage[ruled,english,boxed,linesnumbered]{algorithm2e}
17 \usepackage[english]{algorithm2e}
18 \usepackage{url}
19 \usepackage{mdwlist}
20 \usepackage{multirow}
21 \usepackage{color}
22
23 \date{}
24
25 \title{Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters}
26
27 \author{
28 \textsc{Jacques M. Bahi}
29 \qquad
30 \textsc{Rapha\"el Couturier}\thanks{Contact author}
31 \qquad
32 \textsc{Lilia Ziane Khodja}
33 \mbox{}\\ %
34 \\
35 FEMTO-ST Institute, University of Franche-Comte\\
36 IUT Belfort-Montb\'eliard\\
37 Rue Engel Gros, BP 527, 90016 Belfort, \underline{France}\\
38 \mbox{}\\ %
39 \normalsize
40 \{\texttt{jacques.bahi},~\texttt{raphael.couturier},~\texttt{lilia.ziane\_khoja}\}\texttt{@univ-fcomte.fr}
41 }
42
43 \begin{document}
44
45 \maketitle
46
47 \begin{abstract}
48 In this paper, we aim at exploiting the power computing of a GPU cluster for solving large sparse
49 linear systems. We implement the parallel algorithm of the GMRES iterative method using the CUDA
50 programming language and the MPI parallel environment. The experiments shows that a GPU cluster
51 is more efficient than a CPU cluster. In order to optimize the performances, we use a compressed
52 storage format for the sparse vectors and the hypergraph partitioning. These solutions improve
53 the spatial and temporal localization of the shared data between the computing nodes of the GPU
54 cluster.  
55 \end{abstract}
56
57
58
59 %%--------------------%%
60 %%      SECTION 1     %%
61 %%--------------------%%
62 \section{Introduction}
63 \label{sec:01}
64 Large sparse linear systems arise in  most numerical scientific or industrial simulations.
65 They model numerous complex problems in different areas of applications such as mathematics,
66 engineering, biology or physics~\cite{ref18}. However, solving these systems of equations is
67 often an expensive operation in terms of execution time and memory space consumption. Indeed,
68 the linear systems arising in most applications are very large  and have many zero
69 coefficients, and this sparse nature leads to irregular accesses to load the nonzero coefficients
70 from the memory.  
71
72 Parallel computing has become a key issue for solving sparse linear systems of large sizes.
73 This is due to the computing power and the storage capacity of the current parallel computers as
74 well as the availability of different parallel programming languages ​​and environments such as the
75 MPI communication standard. Nowadays, graphics processing units (GPUs) are the most commonly used
76 hardware accelerators in high performance computing. They are equipped with a massively parallel
77 architecture allowing them to compute faster than CPUs. However, the parallel computers equipped 
78 with GPUs introduce new programming difficulties to adapt  parallel algorithms to their architectures.
79
80 In this paper, we use the GMRES iterative method for solving large sparse linear systems on a cluster
81 of GPUs. The parallel algorithm of this method is implemented using the CUDA programming language for
82 the GPUs and the MPI parallel environment to distribute the computations between the different GPU nodes
83 of the cluster. Particularly, we focus on improving the performances of the parallel sparse matrix-vector multiplication. 
84 Indeed, this operation is not only very time-consuming but it also requires communications
85 between the GPU nodes. These communications are needed to build the global vector involved in
86 the parallel sparse matrix-vector multiplication. It should be noted that a communication between two
87 GPU nodes involves data transfers between the GPU and CPU memories in the same node and the MPI communications
88 between the CPUs of the GPU nodes. For performance purposes, we propose to use a compressed storage
89 format to reduce the size of the vectors to be exchanged between the GPU nodes and a hypergraph partitioning
90 of the sparse matrix to reduce the total communication volume. 
91
92 The present paper is organized as follows. In Section~\ref{sec:02} some previous works about solving 
93 sparse linear systems on GPUs are presented. In Section~\ref{sec:03} is given a general overview of the GPU architectures,
94 followed by that the GMRES method in Section~\ref{sec:04}. In Section~\ref{sec:05} the main key points
95 of the parallel implementation of the GMRES method on a GPU cluster are described. Finally, in Section~\ref{sec:06}
96 is presented the performance improvements of the parallel GMRES algorithm on a GPU cluster.
97
98
99 %%--------------------%%
100 %%      SECTION 2     %%
101 %%--------------------%%
102 \section{Related work}
103 \label{sec:02}
104 Numerous works have shown the efficiency of GPUs for solving sparse linear systems compared
105 to their CPUs counterpart. Different iterative methods are implemented on one GPU, for example
106 Jacobi and Gauss-Seidel in~\cite{refa}, conjugate and biconjugate gradients in~\cite{refd,refe,reff,refj}
107 and GMRES in~\cite{refb,refc,refg,refm}. In addition, some iterative methods are implemented on 
108 shared memory multi-GPUs machines as~\cite{refh,refi,refk,refl}. A limited set of studies are
109 devoted to the parallel implementation of the iterative methods on distributed memory GPU clusters
110 as~\cite{refn,refo,refp}.
111
112 Traditionally, the parallel iterative algorithms do not often scale well on GPU clusters due to
113 the significant cost of the communications between the computing nodes. Some authors have already
114 studied how to reduce these communications. In~\cite{cev10}, the authors used a hypergraph partitioning
115 as a preprocessing to the parallel conjugate gradient algorithm in order to reduce the inter-GPU
116 communications over a GPU cluster. The sequential hypergraph partitioning method provided by the
117 PaToH tool~\cite{Cata99} is used because of the small sizes of the sparse symmetric linear systems
118 to be solved. In~\cite{refq}, a compression and decompression technique is proposed to reduce the
119 communication overheads. This technique is performed on the shared vectors to be exchanged between
120 the computing nodes. In~\cite{refr}, the authors studied the impact of asynchronism on parallel
121 iterative algorithms on local GPU clusters. Asynchronous communication primitives suppress some
122 synchronization barriers and allow overlap of communication and computation. In~\cite{refs}, a
123 communication reduction method is used for implementing finite element methods (FEM) on GPU clusters.
124 This method firstly uses the Reverse Cuthill-McKee reordering to reduce the total communication
125 volume. In addition, the performances of the parallel FEM algorithm are improved by overlapping
126 the communication with computation. 
127
128 %%% MODIF %%%
129 \textcolor{red}{ \bf Our main contribution in this work is to show the difficulties to implement the GMRES method for solving sparse linear systems on a cluster of GPUs. First, we show the main key points of the parallel GMRES algorithm on a GPU cluster. Then, we discuss the improvements of the algorithm which are mainly performed on the sparse matrix-vector multiplication when the matrix is distributed on several GPUs. In fact, on a cluster of GPUs the influence of the communications is greater than on clusters of CPUs due to the CPU/GPU communications between two GPUs that are not on the same machines. We propose to perform a hypergraph partitioning on the problem to be solved, then we reorder the matrix columns according to the partitioning scheme, and we use a compressed format for storing the vectors in such a way to minimize the communication overheads between two GPUs.}
130 %%% END %%%
131
132 %%--------------------%%
133 %%      SECTION 3     %%
134 %%--------------------%%
135 \section{{GPU} architectures}
136 \label{sec:03}
137 A GPU (Graphics processing unit) is a hardware accelerator for high performance computing.
138 Its hardware architecture is composed of hundreds of cores organized in several blocks called
139 \emph{streaming multiprocessors}. It is also equipped with a memory hierarchy. It has a set
140 of registers and a private read-write \emph{local memory} per core, a fast \emph{shared memory},
141 read-only \emph{constant} and \emph{texture} caches per multiprocessor and a read-write
142 \emph{global memory} shared by all its multiprocessors. The new architectures (Fermi, Kepler,
143 etc) have also L1 and L2 caches to improve the accesses to the global memory.
144
145 NVIDIA has released the CUDA platform (Compute Unified Device Architecture)~\cite{Nvi10}
146 which provides a high level GPGPU-based programming language (General-Purpose computing
147 on GPUs), allowing to program GPUs for general purpose computations. In CUDA programming
148 environment, all data-parallel and compute intensive portions of an application running
149 on the CPU are off-loaded onto the GPU. Indeed, an application developed in CUDA is a
150 program written in C language (or Fortran) with a minimal set of extensions to define
151 the parallel functions to be executed by the GPU, called \emph{kernels}. We define kernels,
152 as separate functions from those of the CPU, by assigning them a function type qualifiers
153 \verb+__global__+ or \verb+__device__+.
154
155 At the GPU level, the same kernel is executed by a large number of parallel CUDA threads
156 grouped together as a grid of thread blocks. Each multiprocessor of the GPU executes one
157 or more thread blocks in SIMD fashion (Single Instruction, Multiple Data) and in turn each
158 core of a GPU multiprocessor runs one or more threads within a block in SIMT fashion (Single
159 Instruction, Multiple threads). In order to maximize the occupation of the GPU cores, the
160 number of CUDA threads to be involved in a kernel execution is computed according to the
161 size of the problem to be solved. In contrast, the block size is restricted by the limited
162 memory resources of a core. On current GPUs, a thread block may contain up-to $1,024$ concurrent
163 threads. At any given clock cycle, the threads execute the same instruction of a kernel,
164 but each of them operates on different data. Moreover, threads within a block can cooperate
165 by sharing data through the fast shared memory and coordinate their execution through
166 synchronization points. In contrast, within a grid of thread blocks, there is no synchronization
167 at all between blocks. 
168
169 GPUs  only work on data filled in their global memory and the final results of their kernel
170 executions must be communicated to their hosts (CPUs). Hence, the data must be transferred
171 \emph{in} and \emph{out} of the GPU. However, the speed of memory copy between the CPU and
172 the GPU is slower than the memory copy speed of GPUs. Accordingly, it is necessary to limit
173 the transfer of data between the GPU and its host.
174
175
176 %%--------------------%%
177 %%      SECTION 4     %%
178 %%--------------------%%
179 \section{{GMRES} method}
180 \label{sec:04}
181 %%% MODIF %%%
182 The generalized minimal residual method (GMRES) is an iterative method designed by Saad and Schultz in 1986~\cite{Saa86}. It is a generalization of the minimal residual method (MNRES)~\cite{Pai75} to deal with asymmetric and non Hermitian problems and indefinite symmetric problems. 
183
184 Let us consider the following sparse linear system of $n$ equations:
185 \begin{equation}
186   Ax = b,
187 \label{eq:01}
188 \end{equation}
189 where $A\in\mathbb{R}^{n\times n}$ is a sparse square and nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side vector. The main idea of the GMRES method is to find a sequence of solutions $\{x_k\}_{k\in\mathbb{N}}$ which minimizes at best the residual $r_k=b-Ax_k$. The solution $x_k$ is computed in a Krylov sub-space $\mathcal{K}_k(A,v_1)$:
190 \begin{equation}
191 \begin{array}{ll}
192   \mathcal{K}_{k}(A,v_{1}) \equiv \text{span}\{v_{1}, Av_{1}, A^{2}v_{1},..., A^{k-1}v_{1}\}, & v_{1}=\frac{r_{0}}{\|r_{0}\|_{2}},
193 \end{array} 
194 \end{equation}
195 such that the Petrov-Galerkin condition is satisfied:
196 \begin{equation}
197   r_{k} \perp A\mathcal{K}_{k}(A, v_{1}).
198 \end{equation}
199
200 Algorithm~\ref{alg:01} illustrates the main key points of the GMRES method with restarts. The linear system to be solved in this algorithm is left-preconditioned where $M$ is the preconditioning matrix. The Arnoldi process~\cite{Arn51} is used (from line~$7$ to line~$17$ of algorithm~\ref{alg:01}) to construct an orthonormal basis $V_m$ and a Hessenberg matrix $\bar{H}_m$ of order $(m+1)\times m$ such that $m\ll n$. Then, the least-squares problem is solved (line~$18$) to find the vector $y\in\mathbb{R}^m$ which minimizes the residual. Finally, the solution $x_m$ is computed in the Krylov sub-space spanned by $V_m$ (line~$19$). In practice, the GMRES algorithm stops when the Euclidean norm of the residual is small enough and/or the maximum number of iterations is reached.
201 %%% END %%%
202
203 \begin{algorithm}[!h]
204   %\SetAlgoLined
205   \Entree{$A$ (matrix), $b$ (vector), $M$ (preconditioning matrix),
206 $x_{0}$ (initial guess), $\varepsilon$ (tolerance threshold), $max$ (maximum number of iterations),
207 $m$ (number of iterations of the Arnoldi process)}
208   \Sortie{$x$ (solution vector)}
209   \BlankLine
210   $r_{0} \leftarrow M^{-1}(b - Ax_{0})$\;
211   $\beta \leftarrow \|r_{0}\|_{2}$\;
212   $\alpha \leftarrow \|M^{-1}b\|_{2}$\;
213   $convergence \leftarrow false$\;
214   $k \leftarrow 1$\;
215   \BlankLine
216   \While{$(\neg convergence)$}{
217     $v_{1} \leftarrow r_{0} / \beta$\;
218     \For{$j=1$ {\bf to} $m$}{
219       $w_{j} \leftarrow M^{-1}Av_{j}$\;
220       \For{$i=1$ {\bf to} $j$}{
221         $h_{i,j} \leftarrow (w_{j},v_{i})$\;
222         $w_{j} \leftarrow w_{j} - h_{i,j} \times v_{i}$\;
223       }
224       $h_{j+1,j} \leftarrow \|w_{j}\|_{2}$\;
225       $v_{j+1} \leftarrow w_{j} / h_{j+1,j}$\;
226     }
227     \BlankLine
228     Put $V_{m}=\{v_{j}\}_{1\leq j \leq m}$ and $\bar{H}_{m}=(h_{i,j})$ Hessenberg matrix of order $(m+1)\times m$\;
229     Solve the least-squares problem of size $m$: $\underset{y\in\mathbb{R}^{m}}{min}\|\beta e_{1}-\bar{H}_{m}y\|_{2}$\;
230     \BlankLine
231     $x_{m} \leftarrow x_{0} + V_{m}y$\;
232     $r_{m} \leftarrow M^{-1}(b-Ax_{m})$\;
233     $\beta \leftarrow \|r_{m}\|_{2}$\;
234     \BlankLine
235     \eIf{$(\frac{\beta}{\alpha}<\varepsilon)$ {\bf or} $(k\geq max)$}{
236       $convergence \leftarrow true$\;
237     }{
238       $x_{0} \leftarrow x_{m}$\;
239       $r_{0} \leftarrow r_{m}$\;
240       $k \leftarrow k + 1$\;
241     }
242   }
243 \caption{Left-preconditioned GMRES algorithm with restarts}
244 \label{alg:01}
245 \end{algorithm}
246
247
248
249 %%--------------------%%
250 %%      SECTION 5     %%
251 %%--------------------%%
252 \section{Parallel GMRES method on {GPU} clusters}
253 \label{sec:05}
254
255 \subsection{Parallel implementation on a GPU cluster}
256 \label{sec:05.01}
257 The implementation of the GMRES algorithm on a GPU cluster is performed by using
258 a parallel heterogeneous programming. We use the programming language CUDA for the
259 GPUs and the parallel environment MPI for the distribution of the computations between
260 the GPU computing nodes. In this work, a GPU computing node is composed of a GPU and
261 a CPU core managed by a MPI process.
262
263 Let us consider a cluster composed of $p$ GPU computing nodes. First, the sparse linear
264 system~(\ref{eq:01}) is split into $p$ sub-linear systems, each is attributed to a GPU
265 computing node. We partition row-by-row the sparse matrix $A$ and both vectors $x$ and
266 $b$ in $p$ parts (see Figure~\ref{fig:01}). The data issued from the partitioning operation
267 are off-loaded on the GPU global memories to be proceeded by the GPUs. Then, all the
268 computing nodes of the GPU cluster execute the same GMRES iterative algorithm but on
269 different data. Finally, the GPU computing nodes synchronize their computations by using
270 MPI communication routines to solve the global sparse linear system. In what follows,
271 the computing nodes sharing data are called the neighboring nodes.
272
273 \begin{figure}
274 \centering
275   \includegraphics[width=80mm,keepaspectratio]{Figures/partition}
276 \caption{Data partitioning of the sparse matrix $A$, the solution vector $x$ and the right-hand side $b$ in $4$ partitions}
277 \label{fig:01}
278 \end{figure}
279
280 In order to exploit the computing power of the GPUs, we have to execute maximum computations
281 on GPUs to avoid the data transfers between the GPU and its host (CPU), and to maximize the
282 GPU cores utilization to hide global memory access latency. The implementation of the GMRES
283 algorithm is performed by executing the functions operating on vectors and matrices as kernels
284 on GPUs. These operations are often easy to parallelize and more efficient on parallel architectures
285 when they operate on large vectors. We use the fastest routines of the CUBLAS library
286 (CUDA Basic Linear Algebra Subroutines) to implement the dot product (\verb+cublasDdot()+),
287 the Euclidean norm (\verb+cublasDnrm2()+) and the AXPY operation (\verb+cublasDaxpy()+).
288 In addition, we have coded in CUDA a kernel for the scalar-vector product (lines~$7$ and~$15$
289 of Algorithm~\ref{alg:01}), a kernel for solving the least-squares problem (line~$18$) and a
290 kernel for solution vector updates (line~$19$).
291
292 The solution of the least-squares problem in the GMRES algorithm is based on:
293 \begin{itemize}
294   \item a QR factorization of the Hessenberg matrix $\bar{H}$ by using plane rotations and,
295   \item backward-substitution method to compute the vector $y$ minimizing the residual.
296 \end{itemize}
297 This operation is not easy to parallelize and it is not interesting to implement it on GPUs. 
298 However, the size $m$ of the linear least-squares problem to solve in the GMRES method with
299 restarts is very small. So, this problem is solved in sequential by one GPU thread.
300
301 The most important operation in the GMRES method is the sparse matrix-vector multiplication.
302 It is quite expensive for large size matrices in terms of execution time and memory space. In
303 addition, it performs irregular memory accesses to read the nonzero values of the sparse matrix,
304 implying non coalescent accesses to the GPU global memory which slow down the performances of
305 the GPUs. So we use the HYB kernel developed and optimized by Nvidia~\cite{CUSP} which gives on
306 average the best performance in sparse matrix-vector multiplications on GPUs~\cite{Bel09}. The
307 HYB (Hybrid) storage format is the combination of two sparse storage formats: Ellpack format
308 (ELL) and Coordinate format (COO). It stores a typical number of nonzero values per row in ELL
309 format and remaining entries of exceptional rows in COO format. It combines the efficiency of
310 ELL, due to the regularity of its memory accessing and the flexibility of COO which is insensitive
311 to the matrix structure. 
312
313 In the parallel GMRES algorithm, the GPU computing nodes must exchange between them their shared data in
314 order to construct the global vector necessary to compute the parallel sparse matrix-vector
315 multiplication (SpMV). In fact, each computing node has locally the vector elements corresponding
316 to the rows of its sparse sub-matrix and, in order to compute its part of the SpMV, it also
317 requires the vector elements of its neighboring nodes corresponding to the column indices in
318 which its local sub-matrix has nonzero values. Consequently, each computing node manages a global
319 vector composed of a local vector of size $\frac{n}{p}$ and a shared vector of size $S$:
320 \begin{equation}
321   S = bw - \frac{n}{p},
322 \label{eq:11}
323 \end{equation}
324 where $\frac{n}{p}$ is the size of the local vector and $bw$ is the bandwidth of the local sparse
325 sub-matrix which represents the number of columns between the minimum and the maximum column indices
326 (see Figure~\ref{fig:01}). In order to improve memory accesses, we use the texture memory to
327 cache elements of the global vector.
328
329 On a GPU cluster, the exchanges of the shared vectors elements between the neighboring nodes are
330 performed as follows:
331 \begin{itemize}
332   \item at the level of the sending node: data transfers of the shared data from the GPU global memory
333 to the CPU memory by using the CUBLAS communication routine \verb+cublasGetVector()+,
334   \item data exchanges between the CPUs by the MPI communication routine \verb+MPI_Alltoallv()+ and,
335   \item at the level of the receiving node: data transfers of the received shared data from the CPU
336 memory to the GPU global memory by using CUBLAS communication routine \verb+cublasSetVector()+. 
337 \end{itemize}  
338
339 \subsection{Experimentations}
340 \label{sec:05.02}
341 The experiments are done on a cluster composed of six machines interconnected by an Infiniband network
342 of $20$~GB/s. Each machine is a Xeon E5530 Quad-Core running at $2.4$~GHz. It provides $12$~GB of RAM
343 memory with a memory bandwidth of $25.6$~GB/s and it is equipped with two Tesla C1060 GPUs. Each GPU
344 is composed of $240$ cores running at $1.3$ GHz and has $4$~GB of global memory with a memory bandwidth
345 of $102$~GB/s. The GPU is connected to the CPU via a PCI-Express 16x Gen2.0 with a throughput of $8$~GB/s.
346 Figure~\ref{fig:02} shows the general scheme of the GPU cluster.
347
348 \begin{figure}[!h]
349 \centering
350   \includegraphics[width=80mm,keepaspectratio]{Figures/clusterGPU}
351 \caption{A cluster composed of six machines, each equipped with two Tesla C1060 GPUs}
352 \label{fig:02}
353 \end{figure}
354
355 Linux cluster version 2.6.18 OS is installed on the six machines. The C programming language is used for
356 coding the GMRES algorithm on both the CPU and the GPU versions. CUDA version 4.0~\cite{ref19} is used for programming 
357 the GPUs, using CUBLAS library~\cite{ref37} to deal with the functions operating on vectors. Finally, MPI routines
358 of OpenMPI 1.3.3 are used to carry out the communication between the CPU cores.
359
360 The experiments are done on linear systems associated to sparse matrices chosen from the Davis collection of the
361 university of Florida~\cite{Dav97}. They are matrices arising in real-world applications. Table~\ref{tab:01} shows
362 the main characteristics of these sparse matrices and Figure~\ref{fig:03} shows their sparse structures. For
363 each matrix, we give the number of rows (column~$3$ in Table~\ref{tab:01}), the number of nonzero values (column~$4$)
364 and the bandwidth (column~$5$).
365
366 \begin{table}
367 \begin{center}
368 \begin{tabular}{|c|c|r|r|r|} 
369 \hline
370 Matrix type                 & Name              & \# Rows   & \# Nonzeros  & Bandwidth \\\hline \hline
371 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 101 492   & 1 647 264    & 100 464        \\
372                             & ecology2          & 999 999   & 4 995 991    & 2 001          \\ 
373                             & finan512          & 74 752    & 596 992      & 74 725         \\ 
374                             & G3\_circuit       & 1 585 478 & 7 660 826    & 1 219 059      \\
375                             & shallow\_water2   & 81 920    & 327 680      & 58 710         \\
376                             & thermal2          & 1 228 045 & 8 580 313    & 1 226 629      \\ \hline \hline
377 \multirow{6}{*}{Asymmetric} & cage13            & 445 315   & 7 479 343    & 318 788        \\
378                             & crashbasis        & 160 000   & 1 750 416    & 120 202        \\
379                             & FEM\_3D\_thermal2 & 147 900   & 3 489 300    & 117 827        \\
380                             & language          & 399 130   & 1 216 334    & 398 622        \\
381                             & poli\_large       & 15 575    & 33 074       & 15 575         \\
382                             & torso3            & 259 156   & 4 429 042    & 216 854        \\ \hline
383 \end{tabular}
384 \caption{Main characteristics of the sparse matrices chosen from the Davis collection}
385 \label{tab:01}
386 \end{center}
387 \end{table}
388
389 \begin{figure}
390 \centering
391   \includegraphics[width=120mm,keepaspectratio]{Figures/matrices}
392 \caption{Structures of the sparse matrices chosen from the Davis collection}
393 \label{fig:03}
394 \end{figure}
395
396 All the experiments are performed on double-precision data. The parameters of the parallel
397 GMRES algorithm are as follows: the tolerance threshold $\varepsilon=10^{-12}$, the maximum
398 number of iterations $max=500$, the Arnoldi process is limited to $m=16$ iterations, the elements 
399 of the guess solution $x_0$ is initialized to $0$ and those of the right-hand side vector are
400 initialized to $1$. For simplicity sake, we chose the matrix preconditioning $M$ as the
401 main diagonal of the sparse matrix $A$. Indeed, it allows us to easily compute the required inverse
402 matrix $M^{-1}$ and it provides relatively good preconditioning in most cases. Finally, we set 
403 the size of a thread-block in GPUs to $512$ threads. 
404 %%% MODIF %%%
405 \textcolor{red}{\bf It would be noted that the same optimizations done on the GPU version of the parallel GMRES algorithm are performed on the CPU version.}
406 %%% END %%%
407
408 \begin{table}[!h]
409 \begin{center}
410 \begin{tabular}{|c|c|c|c|c|c|c|} 
411 \hline
412 Matrix            & $Time_{cpu}$  & $Time_{gpu}$  & $\tau$  & \# $iter$ & $prec$ & $\Delta$   \\ \hline \hline
413 2cubes\_sphere    & 0.234 s     & 0.124 s      & 1.88  & 21     & 2.10e-14      & 3.47e-18 \\
414 ecology2          & 0.076 s     & 0.035 s      & 2.15  & 21     & 4.30e-13      & 4.38e-15 \\
415 finan512          & 0.073 s     & 0.052 s      & 1.40  & 17     & 3.21e-12      & 5.00e-16 \\
416 G3\_circuit       & 1.016 s     & 0.649 s      & 1.56  & 22     & 1.04e-12      & 2.00e-15 \\
417 shallow\_water2   & 0.061 s     & 0.044 s      & 1.38  & 17     & 5.42e-22      & 2.71e-25 \\
418 thermal2          & 1.666 s     & 0.880 s      & 1.89  & 21     & 6.58e-12      & 2.77e-16 \\ \hline \hline
419 cage13            & 0.721 s     & 0.338 s      & 2.13  & 26     & 3.37e-11      & 2.66e-15 \\
420 crashbasis        & 1.349 s     & 0.830 s      & 1.62  & 121    & 9.10e-12      & 6.90e-12 \\
421 FEM\_3D\_thermal2 & 0.797 s     & 0.419 s      & 1.90  & 64     & 3.87e-09      & 9.09e-13 \\
422 language          & 2.252 s     & 1.204 s      & 1.87  & 90     & 1.18e-10      & 8.00e-11 \\
423 poli\_large       & 0.097 s     & 0.095 s      & 1.02  & 69     & 4.98e-11      & 1.14e-12 \\
424 torso3            & 4.242 s     & 2.030 s      & 2.09  & 175    & 2.69e-10      & 1.78e-14 \\ \hline
425 \end{tabular}
426 \caption{Performances of the parallel GMRES algorithm on a cluster of 24 CPU cores vs. a cluster of 12 GPUs}
427 \label{tab:02}
428 \end{center}
429 \end{table}
430
431 In Table~\ref{tab:02}, we give the performances of the parallel GMRES algorithm for solving the linear
432 systems associated to the sparse matrices shown in Table~\ref{tab:01}. The second and third columns show
433 the execution times in seconds obtained on a cluster of 24 CPU cores and on a cluster of 12 GPUs, respectively.
434 The fourth column shows the ratio $\tau$ between the CPU time $Time_{cpu}$ and the GPU time $Time_{gpu}$ that
435 is computed as follows:
436 \begin{equation}
437   \tau = \frac{Time_{cpu}}{Time_{gpu}}.
438 \end{equation}
439 From these ratios, we can notice that the use of many GPUs is not interesting to solve small sparse linear
440 systems. Solving these sparse linear systems on a cluster of 12 GPUs is as fast as on a cluster of 24 CPU
441 cores. Indeed, the small sizes of the sparse matrices do not allow to maximize the utilization of the GPU
442 cores of the cluster. The fifth, sixth and seventh columns show, respectively, the number of iterations performed
443 by the parallel GMRES algorithm to converge, the precision of the solution, $prec$, computed on the GPU
444 cluster and the difference, $\Delta$, between the solutions computed on the GPU and the GPU clusters. The
445 last two parameters are used to validate the results obtained on the GPU cluster and they are computed as
446 follows:
447 \begin{equation}
448 \begin{array}{c}
449   prec = \|M^{-1}(b-Ax^{gpu})\|_{\infty}, \\
450   \Delta = \|x^{cpu}-x^{gpu}\|_{\infty},
451 \end{array}
452 \end{equation}
453 where $x^{cpu}$ and $x^{gpu}$ are the solutions computed, respectively, on the CPU cluster and on the GPU cluster.
454 We can see that the precision of the solutions computed on the GPU cluster are sufficient, they are about $10^{-10}$,
455 and the parallel GMRES algorithm computes almost the same solutions in both CPU and GPU clusters, with $\Delta$ varying
456 from $10^{-11}$ to $10^{-25}$.
457
458 Afterwards, we evaluate the performances of the parallel GMRES algorithm for solving large linear systems. We have
459 developed in C programming language a generator of large sparse matrices having a band structure which arises 
460 in  most numerical problems. This generator uses the sparse matrices of the Davis collection as the initial
461 matrices to build the large band matrices. It is executed in parallel by all the MPI processes of the cluster
462 so that each process constructs its own sub-matrix as a rectangular block of the global sparse matrix. Each process
463 $i$ computes the size $n_i$ and the offset $offset_i$ of its sub-matrix in the global sparse matrix according to the
464 size $n$ of the linear system to be solved and the number of the GPU computing nodes $p$ as follows:
465 \begin{equation}
466   n_i = \frac{n}{p},
467 \end{equation} 
468 \begin{equation}
469   offset_i = \left\{
470   \begin{array}{l}
471   0\mbox{~if~}i=0,\\
472   offset_{i-1}+n_{i-1}\mbox{~otherwise.}
473   \end{array}
474   \right.
475 \end{equation} 
476 So each process $i$ performs several copies of the same initial matrix chosen from the Davis collection and it
477 puts all these copies on the main diagonal of the global matrix in order to construct a band matrix. Moreover,
478 it fulfills the empty spaces between two successive copies by small copies, \textit{lower\_copy} and \textit{upper\_copy},
479 of the same initial matrix. Figure~\ref{fig:04} shows a generation of a sparse bended matrix by four computing nodes.
480
481 \begin{figure}
482 \centering
483   \includegraphics[width=100mm,keepaspectratio]{Figures/generation}
484 \caption{Example of the generation of a large sparse and band matrix by four computing nodes.}
485 \label{fig:04}
486 \end{figure}
487
488 Table~\ref{tab:03} shows the main characteristics (the number of nonzero values and the bandwidth) of the
489 large sparse matrices generated from those of the Davis collection. These matrices are associated to the
490 linear systems of 25 million of unknown values (each generated sparse matrix has 25 million rows). In Table~\ref{tab:04}
491 we show the performances of the parallel GMRES algorithm for solving large linear systems associated to the
492 sparse band matrices of Table~\ref{tab:03}. The fourth column gives the ratio between the execution time
493 spent on a cluster of 24 CPU cores and that spent on a cluster of 12 GPUs. We can notice from these ratios
494 that for solving large sparse matrices the GPU cluster is more efficient (about 5 times faster) than the CPU
495 cluster. The computing power of the GPUs allows to accelerate the computation of the functions operating
496 on large vectors of the parallel GMRES algorithm.
497
498 \begin{table}[!h]
499 \begin{center}
500 \begin{tabular}{|c|c|r|r|} 
501 \hline
502 Matrix type                 & Name              & \# nonzeros & Bandwidth \\ \hline \hline
503 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 413 703 602 & 198 836   \\
504                             & ecology2          & 124 948 019 & 2 002     \\ 
505                             & finan512          & 278 175 945 & 123 900   \\
506                             & G3\_circuit       & 125 262 292 & 1 891 887 \\            
507                             & shallow\_water2   & 100 235 292 & 62 806    \\
508                             & thermal2          & 175 300 284 & 2 421 285 \\ \hline \hline
509 \multirow{6}{*}{Asymmetric} & cage13            & 435 770 480 & 352 566   \\
510                             & crashbasis        & 409 291 236 & 200 203   \\
511                             & FEM\_3D\_thermal2 & 595 266 787 & 206 029   \\
512                             & language          & 76 912 824  & 398 626   \\
513                             & poli\_large       & 53 322 580  & 15 576    \\
514                             & torso3            & 433 795 264 & 328 757   \\ \hline
515 \end{tabular}
516 \caption{Main characteristics of the sparse and band matrices generated from the sparse matrices of the Davis collection.}
517 \label{tab:03}
518 \end{center}
519 \end{table}
520
521
522 \begin{table}[!h]
523 \begin{center}
524 \begin{tabular}{|c|c|c|c|c|c|c|} 
525 \hline
526 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$ & \# $iter$& $prec$   & $\Delta$   \\ \hline \hline
527 2cubes\_sphere    & 3.683 s     & 0.870 s      & 4.23   & 21       & 2.11e-14 & 8.67e-18 \\
528 ecology2          & 2.570 s     & 0.424 s      & 6.06   & 21       & 4.88e-13 & 2.08e-14 \\
529 finan512          & 2.727 s     & 0.533 s      & 5.11   & 17       & 3.22e-12 & 8.82e-14 \\
530 G3\_circuit       & 4.656 s     & 1.024 s      & 4.54   & 22       & 1.04e-12 & 5.00e-15 \\
531 shallow\_water2   & 2.268 s     & 0.384 s      & 5.91   & 17       & 5.54e-21 & 7.92e-24 \\
532 thermal2          & 4.650 s     & 1.130 s      & 4.11   & 21       & 8.89e-12 & 3.33e-16 \\ \hline \hline
533 cage13            & 6.068 s     & 1.054 s      & 5.75   & 26       & 3.29e-11 & 1.59e-14 \\
534 crashbasis        & 25.906 s    & 4.569 s      & 5.67   & 135      & 6.81e-11 & 4.61e-15 \\
535 FEM\_3D\_thermal2 & 13.555 s    & 2.654 s      & 5.11   & 64       & 3.88e-09 & 1.82e-12 \\
536 language          & 13.538 s    & 2.621 s      & 5.16   & 89       & 2.11e-10 & 1.60e-10 \\
537 poli\_large       & 8.619 s     & 1.474 s      & 5.85   & 69       & 5.05e-11 & 6.59e-12 \\
538 torso3            & 35.213 s    & 6.763 s      & 5.21   & 175      & 2.69e-10 & 2.66e-14 \\ \hline
539 \end{tabular}
540 \caption{Performances of the parallel GMRES algorithm for solving large sparse linear systems associated
541 to band matrices on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.}
542 \label{tab:04}
543 \end{center}
544 \end{table}
545
546
547 %%--------------------%%
548 %%      SECTION 6     %%
549 %%--------------------%%
550 \section{Minimization of communications}
551 \label{sec:06}
552 The parallel sparse matrix-vector multiplication requires  data exchanges between the GPU computing nodes
553 to construct the global vector. However, a GPU cluster requires communications between the GPU nodes and the
554 data transfers between the GPUs and their hosts CPUs. In fact, a communication between two GPU nodes implies:  
555 a data transfer from the GPU memory to the CPU memory at the sending node, a MPI communication between the CPUs
556 of two GPU nodes, and a data transfer from the CPU memory to the GPU memory at the receiving node. Moreover,
557 the data transfers between a GPU and a CPU are considered as the most expensive communications on a GPU cluster.
558 For example in our GPU cluster, the data throughput between a GPU and a CPU is of 8 GB/s which is about twice
559 lower than the data transfer rate between CPUs (20 GB/s) and 12 times lower than the memory bandwidth of the
560 GPU global memory (102 GB/s). In this section, we propose two solutions to improve the execution time of the
561 parallel GMRES algorithm on GPU clusters.
562
563 \subsection{Compressed storage format of the sparse vectors}
564 \label{sec:06.01}
565 In Section~\ref{sec:05.01}, the SpMV multiplication uses a global vector having a size equivalent to the matrix
566 bandwidth (see Formula~\ref{eq:11}). However, we can notice that a SpMV multiplication does not often need all
567 the vector elements of the global vector composed of the local and shared sub-vectors. For example in Figure~\ref{fig:01},
568  node 1 only needs  a single vector element from  node 0 (element 1), two elements from node 2 (elements 8
569 and 9) and two elements from  node 3 (elements 13 and 14). Therefore to reduce the communication overheads
570 of the unused vector elements, the GPU computing nodes must exchange between them only the vector elements necessary
571 to perform their local sparse matrix-vector multiplications.
572
573 \begin{figure}
574 \centering
575   \includegraphics[width=120mm,keepaspectratio]{Figures/compress}
576 \caption{Example of data exchanges between node 1 and its neighbors 0, 2 and 3.}
577 \label{fig:05}
578 \end{figure}
579
580 We propose to use a compressed storage format of the sparse global vector. In Figure~\ref{fig:05}, we show an
581 example of the data exchanges between node 1 and its neighbors to construct the compressed global vector.
582 First, the neighboring nodes 0, 2 and 3 determine the vector elements needed by node 1 and, then, they send
583 only these elements to it. Node 1 receives these shared elements in a compressed vector. However to compute
584 the sparse matrix-vector multiplication, it must first copy the received elements to the corresponding indices
585 in the global vector. In order to avoid this process at each iteration, we propose to reorder the columns of the
586 local sub-matrices so as to use the shared vectors in their compressed storage format (see Figure~\ref{fig:06}).
587 For performance purposes, the computation of the shared data to send to the neighboring nodes is performed
588 by the GPU as a kernel. In addition, we use the MPI point-to-point communication routines: a blocking send routine
589 \verb+MPI_Send()+ and a nonblocking receive routine \verb+MPI_Irecv()+.
590
591 \begin{figure}
592 \centering
593   \includegraphics[width=100mm,keepaspectratio]{Figures/reorder}
594 \caption{Reordering of the columns of a local sparse matrix.}
595 \label{fig:06}
596 \end{figure}
597
598 Table~\ref{tab:05} shows the performances of the parallel GMRES algorithm using the compressed storage format
599 of the sparse global vector. The results are obtained from solving large linear systems associated to the sparse
600 band matrices presented in Table~\ref{tab:03}. We can see from Table~\ref{tab:05} that the execution times 
601 of the parallel GMRES algorithm on a cluster of 12 GPUs are improved by about 38\% compared to those presented
602 in Table~\ref{tab:04}. In addition, the ratios between the execution times spent on the cluster of 24 CPU cores
603 and those spent on the cluster of 12 GPUs have increased. Indeed, the reordering of the sparse sub-matrices and
604 the use of a compressed storage format for the sparse vectors minimize the communication overheads between the
605 GPU computing nodes.
606
607 \begin{table}[!h]
608 \begin{center}
609 \begin{tabular}{|c|c|c|c|c|c|c|} 
610 \hline
611 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$& \# $iter$& $prec$   & $\Delta$   \\ \hline \hline
612 2cubes\_sphere    & 3.597 s     & 0.514 s      & 6.99  & 21       & 2.11e-14 & 8.67e-18 \\
613 ecology2          & 2.549 s     & 0.288 s      & 8.83  & 21       & 4.88e-13 & 2.08e-14 \\
614 finan512          & 2.660 s     & 0.377 s      & 7.05  & 17       & 3.22e-12 & 8.82e-14 \\
615 G3\_circuit       & 3.139 s     & 0.480 s      & 6.53  & 22       & 1.04e-12 & 5.00e-15 \\
616 shallow\_water2   & 2.195 s     & 0.253 s      & 8.68  & 17       & 5.54e-21 & 7.92e-24 \\
617 thermal2          & 3.206 s     & 0.463 s      & 6.93  & 21       & 8.89e-12 & 3.33e-16 \\ \hline \hline
618 cage13            & 5.560 s     & 0.663 s      & 8.39  & 26       & 3.29e-11 & 1.59e-14 \\
619 crashbasis        & 25.802 s    & 3.511 s      & 7.35  & 135      & 6.81e-11 & 4.61e-15 \\
620 FEM\_3D\_thermal2 & 13.281 s    & 1.572 s      & 8.45  & 64       & 3.88e-09 & 1.82e-12 \\
621 language          & 12.553 s    & 1.760 s      & 7.13  & 89       & 2.11e-10 & 1.60e-10 \\
622 poli\_large       & 8.515 s     & 1.053 s      & 8.09  & 69       & 5.05e-11 & 6.59e-12 \\
623 torso3            & 31.463 s    & 3.681 s      & 8.55  & 175      & 2.69e-10 & 2.66e-14 \\ \hline
624 \end{tabular}
625 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
626 vectors for solving large sparse linear systems associated to band matrices on a cluster of 24 CPU cores vs.
627 a cluster of 12 GPUs.}
628 \label{tab:05}
629 \end{center}
630 \end{table}
631
632
633 \subsection{Hypergraph partitioning}
634 \label{sec:06.02}
635 In this section, we use another structure of the sparse matrices. We are interested in sparse matrices
636 whose nonzero values are distributed along their large bandwidths. We developed in C programming
637 language a generator of sparse matrices having five bands (see Figure~\ref{fig:07}). The principle of
638 this generator is the same as the one presented in Section~\ref{sec:05.02}. However, the copies made from the
639 initial sparse matrix, chosen from the Davis collection, are placed on the main diagonal and on two
640 off-diagonals on the left and right of the main diagonal. Table~\ref{tab:06} shows the main characteristics
641 of sparse matrices of size 25 million of rows and generated from those of the Davis collection. We can
642 see in the fourth column that the bandwidths of these matrices are as large as their sizes.
643
644 \begin{figure}
645 \centering
646   \includegraphics[width=100mm,keepaspectratio]{Figures/generation_1}
647 \caption{Example of the generation of a large sparse matrix having five bands by four computing nodes.}
648 \label{fig:07}
649 \end{figure}
650
651
652 \begin{table}[!h]
653 \begin{center}
654 \begin{tabular}{|c|c|r|r|} 
655 \hline
656 Matrix type                 & Name              & \# nonzeros   & Bandwidth \\ \hline \hline
657 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 829 082 728   & 24 999 999     \\
658                             & ecology2          & 254 892 056   & 25 000 000     \\ 
659                             & finan512          & 556 982 339   & 24 999 973     \\ 
660                             & G3\_circuit       & 257 982 646   & 25 000 000     \\
661                             & shallow\_water2   & 200 798 268   & 25 000 000     \\
662                             & thermal2          & 359 340 179   & 24 999 998     \\ \hline \hline
663 \multirow{6}{*}{Asymmetric} & cage13            & 879 063 379   & 24 999 998     \\
664                             & crashbasis        & 820 373 286   & 24 999 803     \\
665                             & FEM\_3D\_thermal2 & 1 194 012 703 & 24 999 998     \\
666                             & language          & 155 261 826   & 24 999 492     \\
667                             & poli\_large       & 106 680 819   & 25 000 000     \\
668                             & torso3            & 872 029 998   & 25 000 000     \\ \hline
669 \end{tabular}
670 \caption{Main characteristics of the sparse matrices having five band and generated from the sparse matrices of the Davis collection.}
671 \label{tab:06}
672 \end{center}
673 \end{table}
674
675 In Table~\ref{tab:07} we give the performances of the parallel GMRES algorithm on the CPU and GPU
676 clusters for solving large linear systems associated to the sparse matrices shown in Table~\ref{tab:06}.
677 We can notice from the ratios given in the fourth column that solving sparse linear systems associated
678 to matrices having large bandwidth on the GPU cluster is as fast as on the CPU cluster. This is due 
679 to the large total communication volume necessary to synchronize the computations over the cluster.
680 In fact, the naive partitioning row-by-row or column-by-column of this type of sparse matrices links
681 a GPU node to many neighboring nodes and produces a significant number of data dependencies between
682 the different GPU nodes.   
683
684 \begin{table}[!h]
685 \begin{center}
686 \begin{tabular}{|c|c|c|c|c|c|c|} 
687 \hline
688 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$ & \# $iter$& $prec$ & $\Delta$   \\ \hline \hline
689 2cubes\_sphere    & 15.963 s    & 7.250 s      & 2.20  & 58     & 6.23e-16 & 3.25e-19 \\
690 ecology2          & 3.549 s     & 2.176 s      & 1.63  & 21     & 4.78e-15 & 1.06e-15 \\
691 finan512          & 3.862 s     & 1.934 s      & 1.99  & 17     & 3.21e-14 & 8.43e-17 \\
692 G3\_circuit       & 4.636 s     & 2.811 s      & 1.65  & 22     & 1.08e-14 & 1.77e-16 \\
693 shallow\_water2   & 2.738 s     & 1.539 s      & 1.78  & 17     & 5.54e-23 & 3.82e-26 \\
694 thermal2          & 5.017 s     & 2.587 s      & 1.94  & 21     & 8.25e-14 & 4.34e-18 \\ \hline \hline
695 cage13            & 9.315 s     & 3.227 s      & 2.89  & 26     & 3.38e-13 & 2.08e-16 \\
696 crashbasis        & 35.980 s    & 14.770 s     & 2.43  & 127    & 1.17e-12 & 1.56e-17 \\
697 FEM\_3D\_thermal2 & 24.611 s    & 7.749 s      & 3.17  & 64     & 3.87e-11 & 2.84e-14 \\
698 language          & 16.859 s    & 9.697 s      & 1.74  & 89     & 2.17e-12 & 1.70e-12 \\
699 poli\_large       & 10.200 s    & 6.534 s      & 1.56  & 69     & 5.14e-13 & 1.63e-13 \\
700 torso3            & 49.074 s    & 19.397 s     & 2.53  & 175    & 2.69e-12 & 2.77e-16 \\ \hline
701 \end{tabular}
702 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
703 vectors for solving large sparse linear systems associated to matrices having five bands on a cluster
704 of 24 CPU cores vs. a cluster of 12 GPUs.}
705 \label{tab:07}
706 \end{center}
707 \end{table}
708
709 We propose to use a hypergraph partitioning method which is well adapted to numerous structures 
710 of sparse matrices~\cite{Cat99}. Indeed, it can well model the communications between the computing
711 nodes especially for the asymmetric and rectangular matrices. It gives in most cases good reductions
712 of the total communication volume. Nevertheless, it is more expensive in terms of execution time and
713 memory space consumption than the partitioning method based on graphs.  
714
715 The sparse matrix $A$ of the linear system to be solved is modelled as a hypergraph
716 $\mathcal{H}=(\mathcal{V},\mathcal{E})$ as follows:
717 \begin{itemize}
718 \item each matrix row $i$ ($0\leq i<n$) corresponds to a vertex $v_i\in\mathcal{V}$,
719 \item each matrix column $j$ ($0\leq j<n$) corresponds to a hyperedge $e_j\in\mathcal{E}$, such that:
720 $\forall a_{ij}$ is a nonzero value of the matrix $A$, $v_i\in pins[e_j]$,
721 \item $w_i$ is the weight of vertex $v_i$,
722 \item $c_j$ is the cost of hyperedge $e_j$.  
723 \end{itemize}
724 A $K$-way partitioning of a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$ is defined as a set 
725 of $K$ pairwise disjoint non-empty subsets (or parts) of the vertex set $\mathcal{V}$: $\mathcal{P}=\{\mathcal{V}_1,\ldots,\mathcal{V}_k\}$,
726 such that $\mathcal{V}=\displaystyle\cup_{k=1}^K\mathcal{V}_{k}$. Each computing node is in charge of
727 a vertex subset. Figure~\ref{fig:08} shows an example of a hypergraph partitioning of a sparse matrix
728 of size $(9\times 9)$ into three parts. The circles and squares correspond, respectively, to the vertices
729 and hyperedges of the hypergraph. The solid squares define the cut hyperedges connecting at least two
730 different parts. The connectivity $\lambda_j$ denotes the number of different parts spanned by the cut
731 hyperedge $e_j$.
732
733 \begin{figure}
734 \centering
735   \includegraphics[width=130mm,keepaspectratio]{Figures/hypergraph}
736 \caption{A hypergraph partitioning of a sparse matrix between three computing nodes.}
737 \label{fig:08}
738 \end{figure}
739
740 The cut hyperedges model the communications between the different GPU computing nodes in the cluster,
741 necessary to perform the SpMV multiplication. Indeed, each hyperedge $e_j$ defines a set of atomic
742 computations $b_i\leftarrow b_i+a_{ij}x_j$ of the SpMV multiplication which needs the $j^{th}$ element
743 of  vector $x$. Therefore pins of hyperedge $e_j$ ($pins[e_j]$) denote the set of matrix rows requiring
744 the same vector element $x_j$. For example in Figure~\ref{fig:08}, hyperedge $e_9$ whose pins are:
745 $pins[e_9]=\{v_2,v_5,v_9\}$ represents matrix rows 2, 5 and 9 requiring the vector element $x_9$
746 to compute in parallel the atomic operations: $b_2\leftarrow b_2+a_{29}x_9$, $b_5\leftarrow b_5+a_{59}x_9$
747 and $b_9\leftarrow b_9+a_{99}x_9$. However, $x_9$ is a vector element of the computing node 3 and it must
748 be sent to the neighboring nodes 1 and 2.
749
750 The hypergraph partitioning allows to reduce the total communication volume while maintaining the computational
751 load balance between the computing nodes. Indeed, it minimizes at best the following sum:
752 \begin{equation}
753 \mathcal{X}(\mathcal{P}) = \displaystyle\sum_{e_j\in\mathcal{E}_C} c_j(\lambda_j-1),
754 \end{equation}
755 where $\mathcal{E}_C$ is the set of the cut hyperedges issued from the partitioning $\mathcal{P}$, $c_j$
756 and $\lambda_j$ are, respectively, the cost and the connectivity of the cut hyperedge $e_j$. In addition,
757 the hypergraph partitioning is constrained to maintain the load balance between the $K$ parts:
758 \begin{equation}
759 W_k\leq (1+\epsilon)W_{avg}\mbox{,~}(1\leq k\leq K)\mbox{~and~}(0<\epsilon<1),
760 \end{equation}
761 where $W_k$ is the sum of the vertex weights in the subset $\mathcal{V}_k$, $W_{avg}$ is the average part's
762 weight and $\epsilon$ is the maximum allowed imbalanced ratio.
763
764 The hypergraph partitioning is a NP-complete problem but software tools using heuristics are developed, for
765 example: hMETIS~\cite{Kar98}, PaToH~\cite{Cata99} and Zoltan~\cite{Dev06}. Due to the large sizes of the
766 linear systems to be solved, we use a parallel hypergraph partitioning which must be performed by at least 
767 two MPI processes. The hypergraph model $\mathcal{H}$ of the sparse matrix is split into $p$ (number of computing
768 nodes) sub-hypergraphs $\mathcal{H}_k=(\mathcal{V}_k,\mathcal{E}_k)$, $0\leq k<p$, then the parallel partitioning
769 is applied by using the MPI communication routines.
770
771 Table~\ref{tab:08} shows the performances of the parallel GMRES algorithm for solving the linear systems
772 associated to the sparse matrices presented in Table~\ref{tab:06}. In the experiments, we have used the
773 compressed storage format of the sparse vectors and the parallel hypergraph partitioning developed in the
774 Zoltan tool~\cite{ref20,ref21}. The parameters of the hypergraph partitioning are initialized as follows:
775 \begin{itemize}
776 \item The weight $w_i$ of each vertex $v_i$ is set to the number of the nonzero values on the matrix row $i$,
777 \item For simplicity sake, the cost $c_j$ of each hyperedge $e_j$ is set to 1,
778 \item The maximum imbalanced ratio $\epsilon$ is limited to 10\%.  
779 \end{itemize} 
780 We can notice from Table~\ref{tab:08} that the execution times on the cluster of 12 GPUs are significantly
781 improved compared to those presented in Table~\ref{tab:07}. The hypergraph partitioning applied on the large
782 sparse matrices having large bandwidths have improved the execution times on the GPU cluster by about 65\%.
783
784 \begin{table}[!h]
785 \begin{center}
786 \begin{tabular}{|c|c|c|c|c|c|c|} 
787 \hline
788 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$  & \# iter & $prec$     & $\Delta$   \\ \hline \hline
789 2cubes\_sphere    & 16.430 s    & 2.840 s      & 5.78 & 58     & 6.23e-16 & 3.25e-19 \\
790 ecology2          & 3.152 s     & 0.367 s      & 8.59 & 21     & 4.78e-15 & 1.06e-15 \\
791 finan512          & 3.672 s     & 0.723 s      & 5.08 & 17     & 3.21e-14 & 8.43e-17 \\
792 G3\_circuit       & 4.468 s     & 0.971 s      & 4.60 & 22     & 1.08e-14 & 1.77e-16 \\ 
793 shallow\_water2   & 2.647 s     & 0.312 s      & 8.48 & 17     & 5.54e-23 & 3.82e-26 \\ 
794 thermal2          & 4.190 s     & 0.666 s      & 6.29 & 21     & 8.25e-14 & 4.34e-18 \\ \hline \hline
795 cage13            & 8.077 s     & 1.584 s      & 5.10 & 26     & 3.38e-13 & 2.08e-16 \\
796 crashbasis        & 35.173 s    & 5.546 s      & 6.34 & 127    & 1.17e-12 & 1.56e-17 \\
797 FEM\_3D\_thermal2 & 24.825 s    & 3.113 s      & 7.97 & 64     & 3.87e-11 & 2.84e-14 \\
798 language          & 16.706 s    & 2.522 s      & 6.62 & 89     & 2.17e-12 & 1.70e-12 \\
799 poli\_large       & 12.715 s    & 3.989 s      & 3.19 & 69     & 5.14e-13 & 1.63e-13 \\
800 torso3            & 48.459 s    & 6.234 s      & 7.77 & 175    & 2.69e-12 & 2.77e-16 \\ \hline
801 \end{tabular}
802 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
803 vectors and a hypergraph partitioning method for solving large sparse linear systems associated to matrices
804 having five bands on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.}
805 \label{tab:08}
806 \end{center}
807 \end{table}
808
809 Table~\ref{tab:09} shows in the second, third and fourth columns the total communication volume on a cluster of 12 GPUs by using row-by-row partitioning or hypergraph partitioning and compressed format. The total communication volume defines the total number of the vector elements exchanged between the 12 GPUs. From these columns we can see that the two heuristics, compressed format for the vectors and the hypergraph partitioning, minimize the number the vector elements to be exchanged over the GPU cluster. The compressed format applied  
810
811
812
813 This table shows that the hypergraph partitioning allows to split the large sparse matrices so as to minimize  data
814 dependencies between the GPU computing nodes. However, we can notice in the fourth column that the hypergraph
815 partitioning takes longer than the computation times. As we have mentioned before, the hypergraph partitioning
816 method is less efficient in terms of memory consumption and partitioning time than its graph counterpart.
817 So for the applications which often use the same sparse matrices, we can perform the hypergraph partitioning
818 only once and, then, we save the traces in files to be reused several times. Therefore, this allows us to
819 avoid the partitioning of the sparse matrices at each resolution of the linear systems. 
820
821 \begin{table}[!h]
822 \begin{center}
823 \begin{tabular}{|c|c|c|c|c|} 
824 \hline
825 \multirow{3}{*}{Matrix} & Total comm. vol. & Total comm. vol. & Total comm. vol.              & Time of hypergraph \\
826                         & using row-by row & using compressed & using hypergraph partitioning & partitioning \\
827                         & partitioning     & format           & and compressed format         & in minutes \\ \hline \hline
828 2cubes\_sphere          & 182 061 791      & 25 360 543       & 240 679                       & 68.98         \\
829 ecology2                & 181 267 000      & 26 044 002       & 73 021                        & 4.92          \\
830 finan512                & 182 090 692      & 26 087 431       & 900 729                       & 33.72         \\
831 G3\_circuit             & 192 244 835      & 31 912 003       & 5 366 774                     & 11.63         \\
832 shallow\_water2         & 181 729 606      & 25 105 108       & 60 899                        & 5.06          \\ 
833 thermal2                & 191 350 306      & 30 012 846       & 1 077 921                     & 17.88         \\ \hline \hline
834 cage13                  & 183 970 606      & 28 254 282       & 3 845 440                     & 196.45        \\
835 crashbasis              & 182 931 818      & 29 020 060       & 2 401 876                     & 33.39         \\
836 FEM\_3D\_thermal2       & 182 503 894      & 25 263 767       & 250 105                       & 49.89         \\
837 language                & 183 055 017      & 27 291 486       & 1 537 835                     & 9.07          \\
838 poli\_large             & 181 381 470      & 25 053 554       & 7 388 883                     & 5.92          \\
839 torso3                  & 183 863 292      & 25 682 514       & 613 250                       & 61.51        \\ \hline       
840 \end{tabular}
841 \caption{Total communication volume on a cluster of 12 GPUs using row-by-row or hypergraph partitioning methods and compressed vectors. The total communication volume is defined as the total number of vector elements exchanged between all GPUs of the cluster.}
842 \label{tab:09}
843 \end{center}
844 \end{table}
845
846 %%% MODIF %%%
847 \textcolor{red}{\bf In order to show the influence of the communications on a GPU cluster
848 In tables, we compute the ratios of the computation time over the communication time to show the influence of the communications on a GPU cluster compared to a CPU cluster}
849
850 \textcolor{red}{\bf Finally, the parallel solving of a linear system can be easy to optimize when the associated matrix is regular. This is unfortunately not the case of many real-world applications. When the matrix has an irregular structure, the amount of communication between processors is not the same. Another important parameter is the size of the matrix bandwidth which has a huge influence on the amount of communications. In this work, we have generated different kinds of matrices in order to analyze different difficulties. With as a large bandwidth as possible involving communications between all processors, which is the most difficult situation, we proposed to use two heuristics. Unfortunately, there is no fast method that optimizes the communication in any situation. For systems of non linear equations, there are different algorithms but most of them consist in linearizing the system of equations. In this case, a linear system needs to be solved. The big interest is that the matrix is the same at each step of the non linear system solving, so the partitioning method which is a time consuming step is performed once only.
851 }
852
853 \textcolor{red}{\bf 
854 Another very important issue is that the communications have a greater influence on a cluster of GPUs than on a cluster of CPUs. There are two reasons for this. The first one comes from the fact that with a cluster of GPUs, the CPU/GPU data transfers slow down communications between two GPUs that are not on the same machines. The second one is due to the fact that with GPUs the ratio of the computation time over the communication time decreases since the computation time is reduced. So the impact of the communications between GPUs might be a very important issue that can limit the scalability of a parallel algorithm.}
855 %%% END %%%
856
857 %%--------------------%%
858 %%      SECTION 7     %%
859 %%--------------------%%
860 \section{Conclusion and perspectives}
861 \label{sec:07}
862 In this paper, we have aimed at harnessing the computing power of a GPU cluster for 
863 solving large sparse linear systems. We have implemented the parallel algorithm of the 
864 GMRES iterative method. We have used a heterogeneous parallel programming based on the
865 CUDA language to program the GPUs and the MPI parallel environment to distribute the
866 computations between the GPU nodes on the cluster.
867
868 The experiments have shown that solving large sparse linear systems is more efficient 
869 on a cluster of GPUs than on a cluster of CPUs. However, the efficiency of a GPU cluster
870 is ensured as long as the spatial and temporal localization of the data is well managed. 
871 The data dependency scheme on a GPU cluster is related to the sparse structures of the
872 matrices (positions of the nonzero values) and the number of the computing nodes. We have
873 shown that a large number of communications between the GPU computing nodes affects 
874 considerably the performances of the parallel GMRES algorithm on the GPU cluster. Therefore,
875 we have proposed to reorder the columns of the sparse local sub-matrices on each GPU node
876 and to use a compressed storage format for the sparse vector involved in the parallel
877 sparse matrix-vector multiplication. This solution allows to minimize the communication
878 overheads. In addition, we have shown that it is interesting to choose a partitioning method
879 according to the structure of the sparse matrix. This reduces the total communication
880 volume between the GPU computing nodes.
881
882 In future works, it would be interesting to implement and study the scalability of the
883 parallel GMRES algorithm on large GPU clusters (hundreds or thousands of GPUs) or on geographically
884 distant GPU clusters. In this context, other methods might be used to reduce communication
885 and to improve the performances of the parallel GMRES algorithm as the multisplitting methods.
886 The recent GPU hardware and software architectures provide the GPU-Direct system which allows
887 two GPUs, placed in the same machine or in two remote machines, to exchange data without using
888 CPUs. This improves the data transfers between GPUs. Finally, it would be interesting to implement
889 other iterative methods on GPU clusters for solving large sparse linear or nonlinear systems.
890
891 \paragraph{Acknowledgments}
892 This paper is based upon work supported by the R\'egion de Franche-Comt\'e.
893
894 \bibliography{bib}
895 \bibliographystyle{abbrv}
896 \end{document}