]> AND Private Git Repository - GMRES_For_Journal.git/blob - GMRES_Journal.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Misc. typos.
[GMRES_For_Journal.git] / GMRES_Journal.tex
1 \documentclass[11pt]{article}
2 %\documentclass{acmconf}
3 \usepackage{multicol}
4
5 \usepackage[paper=a4paper,dvips,top=1.5cm,left=1.5cm,right=1.5cm,foot=1cm,bottom=1.5cm]{geometry}
6 \usepackage{times}
7 \usepackage{graphicx}
8 \usepackage{amsmath}
9 \usepackage{amsfonts}
10 \usepackage{amssymb}
11 \usepackage{amsthm}
12 \usepackage{amsopn}
13 \usepackage{xspace}
14 \usepackage{array}
15 \usepackage{epsfig}
16 \usepackage{algorithmic}
17 \usepackage[ruled,english,boxed,linesnumbered]{algorithm2e}
18 \usepackage[english]{algorithm2e}
19 \usepackage{url}
20 \usepackage{mdwlist}
21 \usepackage{multirow}
22 %\usepackage{color}
23
24 \date{}
25
26 \title{Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters}
27
28 \author{
29 \textsc{Lilia Ziane Khodja}
30 \qquad
31 \textsc{Rapha\"el Couturier}\thanks{Contact author}
32 \qquad
33 \textsc{Arnaud Giersch}
34 \qquad
35 \textsc{Jacques M. Bahi}
36 \mbox{}\\ %
37 \\
38 FEMTO-ST Institute, University of Franche-Comte\\
39 IUT Belfort-Montb\'eliard\\
40 19 Av. du Maréchal Juin, BP 527, 90016 Belfort, France\\
41 \mbox{}\\ %
42 \normalsize
43 \{\texttt{lilia.ziane\_khoja},~\texttt{raphael.couturier},~\texttt{arnaud.giersch},~\texttt{jacques.bahi}\}\texttt{@univ-fcomte.fr}
44 }
45
46 \newcommand{\Iter}{\mathit{iter}}
47 \newcommand{\Max}{\mathit{max}}
48 \newcommand{\Offset}{\mathit{offset}}
49 \newcommand{\Prec}{\mathit{prec}}
50 \newcommand{\Ratio}{\mathit{Ratio}}
51 \newcommand{\Time}[1]{\mathit{Time}_\mathit{#1}}
52 \newcommand{\Wavg}{W_{\mathit{avg}}}
53
54 \begin{document}
55
56 \maketitle
57
58 \begin{abstract}
59 In this paper, we aim at exploiting the power computing of a GPU cluster for solving large sparse
60 linear systems. We implement the parallel algorithm of the GMRES iterative method using the CUDA
61 programming language and the MPI parallel environment. The experiments show that a GPU cluster
62 is more efficient than a CPU cluster. In order to optimize the performances, we use a compressed
63 storage format for the sparse vectors and the hypergraph partitioning. These solutions improve
64 the spatial and temporal localization of the shared data between the computing nodes of the GPU
65 cluster.  
66 \end{abstract}
67
68
69
70 %%--------------------%%
71 %%      SECTION 1     %%
72 %%--------------------%%
73 \section{Introduction}
74 \label{sec:01}
75 Large sparse linear systems arise in  most numerical scientific or industrial simulations.
76 They model numerous complex problems in different areas of applications such as mathematics,
77 engineering, biology or physics~\cite{ref18}. However, solving these systems of equations is
78 often an expensive operation in terms of execution time and memory space consumption. Indeed,
79 the linear systems arising in most applications are very large  and have many zero
80 coefficients, and this sparse nature leads to irregular accesses to load the nonzero coefficients
81 from the memory.  
82
83 Parallel computing has become a key issue for solving sparse linear systems of large sizes.
84 This is due to the computing power and the storage capacity of the current parallel computers as
85 well as the availability of different parallel programming languages ​​and environments such as the
86 MPI communication standard. Nowadays, graphics processing units (GPUs) are the most commonly used
87 hardware accelerators in high performance computing. They are equipped with a massively parallel
88 architecture allowing them to compute faster than CPUs. However, the parallel computers equipped 
89 with GPUs introduce new programming difficulties to adapt  parallel algorithms to their architectures.
90
91 In this paper, we use the GMRES iterative method for solving large sparse linear systems on a cluster
92 of GPUs. The parallel algorithm of this method is implemented using the CUDA programming language for
93 the GPUs and the MPI parallel environment to distribute the computations between the different GPU nodes
94 of the cluster. Particularly, we focus on improving the performances of the parallel sparse matrix-vector multiplication. 
95 Indeed, this operation is not only very time-consuming but it also requires communications
96 between the GPU nodes. These communications are needed to build the global vector involved in
97 the parallel sparse matrix-vector multiplication. It should be noted that a communication between two
98 GPU nodes involves data transfers between the GPU and CPU memories in the same node and the MPI communications
99 between the CPUs of the GPU nodes. For performance purposes, we propose to use a compressed storage
100 format to reduce the size of the vectors to be exchanged between the GPU nodes and a hypergraph partitioning
101 of the sparse matrix to reduce the total communication volume. 
102
103 The present paper is organized as follows. In Section~\ref{sec:02} some previous works about solving 
104 sparse linear systems on GPUs are presented. In Section~\ref{sec:03} is given a general overview of the GPU architectures,
105 followed by that the GMRES method in Section~\ref{sec:04}. In Section~\ref{sec:05} the main key points
106 of the parallel implementation of the GMRES method on a GPU cluster are described. Finally, in Section~\ref{sec:06}
107 is presented the performance improvements of the parallel GMRES algorithm on a GPU cluster.
108
109
110 %%--------------------%%
111 %%      SECTION 2     %%
112 %%--------------------%%
113 \section{Related work}
114 \label{sec:02}
115 Numerous works have shown the efficiency of GPUs for solving sparse linear systems compared
116 to their CPUs counterpart. Different iterative methods are implemented on one GPU, for example
117 Jacobi and Gauss-Seidel in~\cite{refa}, conjugate and biconjugate gradients in~\cite{refd,refe,reff,refj}
118 and GMRES in~\cite{refb,refc,refg,refm}. In addition, some iterative methods are implemented on 
119 shared memory multi-GPUs machines as~\cite{refh,refi,refk,refl}. A limited set of studies are
120 devoted to the parallel implementation of the iterative methods on distributed memory GPU clusters
121 as~\cite{refn,refo,refp}.
122
123 Traditionally, the parallel iterative algorithms do not often scale well on GPU clusters due to
124 the significant cost of the communications between the computing nodes. Some authors have already
125 studied how to reduce these communications. In~\cite{cev10}, the authors used a hypergraph partitioning
126 as a preprocessing to the parallel conjugate gradient algorithm in order to reduce the inter-GPU
127 communications over a GPU cluster. The sequential hypergraph partitioning method provided by the
128 PaToH tool~\cite{Cata99} is used because of the small sizes of the sparse symmetric linear systems
129 to be solved. In~\cite{refq}, a compression and decompression technique is proposed to reduce the
130 communication overheads. This technique is performed on the shared vectors to be exchanged between
131 the computing nodes. In~\cite{refr}, the authors studied the impact of asynchronism on parallel
132 iterative algorithms on local GPU clusters. Asynchronous communication primitives suppress some
133 synchronization barriers and allow overlap of communication and computation. In~\cite{refs}, a
134 communication reduction method is used for implementing finite element methods (FEM) on GPU clusters.
135 This method firstly uses the Reverse Cuthill-McKee reordering to reduce the total communication
136 volume. In addition, the performances of the parallel FEM algorithm are improved by overlapping
137 the communication with computation. 
138
139  Our main contribution in this work is to show the difficulties of implementing the GMRES method to solve sparse linear systems on a cluster of GPUs. First, we show the main key points of the parallel GMRES algorithm on a GPU cluster. Then, we discuss the improvements of the algorithm which are mainly performed on the sparse matrix-vector multiplication when the matrix is distributed on several GPUs. In fact, on a cluster of GPUs the influence of the communications is greater than on clusters of CPUs due to the CPU/GPU communications between two GPUs that are not on the same machines. We propose to perform a hypergraph partitioning on the problem to be solved, then we reorder the matrix columns according to the partitioning scheme, and we use a compressed format to store the vectors in order to minimize the communication overheads between two GPUs.
140
141
142 %%--------------------%%
143 %%      SECTION 3     %%
144 %%--------------------%%
145 \section{{GPU} architectures}
146 \label{sec:03}
147 A GPU (Graphics processing unit) is a hardware accelerator for high performance computing.
148 Its hardware architecture is composed of hundreds of cores organized in several blocks called
149 \emph{streaming multiprocessors}. It is also equipped with a memory hierarchy. It has a set
150 of registers and a private read-write \emph{local memory} per core, a fast \emph{shared memory},
151 read-only \emph{constant} and \emph{texture} caches per multiprocessor and a read-write
152 \emph{global memory} shared by all its multiprocessors. The new architectures (Fermi, Kepler,
153 etc) have also L1 and L2 caches to improve the accesses to the global memory.
154
155 NVIDIA has released the CUDA platform (Compute Unified Device Architecture)~\cite{Nvi10}
156 which provides a high level GPGPU-based programming language (General-Purpose computing
157 on GPUs), allowing to program GPUs for general purpose computations. In CUDA programming
158 environment, all data-parallel and compute intensive portions of an application running
159 on the CPU are off-loaded onto the GPU. Indeed, an application developed in CUDA is a
160 program written in C language (or Fortran) with a minimal set of extensions to define
161 the parallel functions to be executed by the GPU, called \emph{kernels}. We define kernels,
162 as separate functions from those of the CPU, by assigning them a function type qualifiers
163 \verb+__global__+ or \verb+__device__+.
164
165 At the GPU level, the same kernel is executed by a large number of parallel CUDA threads
166 grouped together as a grid of thread blocks. Each multiprocessor of the GPU executes one
167 or more thread blocks in SIMD fashion (Single Instruction, Multiple Data) and in turn each
168 core of a GPU multiprocessor runs one or more threads within a block in SIMT fashion (Single
169 Instruction, Multiple threads). In order to maximize the occupation of the GPU cores, the
170 number of CUDA threads to be involved in a kernel execution is computed according to the
171 size of the problem to be solved. In contrast, the block size is restricted by the limited
172 memory resources of a core. On current GPUs, a thread block may contain up-to $1,024$ concurrent
173 threads. At any given clock cycle, the threads execute the same instruction of a kernel,
174 but each of them operates on different data. Moreover, threads within a block can cooperate
175 by sharing data through the fast shared memory and coordinate their execution through
176 synchronization points. In contrast, within a grid of thread blocks, there is no synchronization
177 at all between blocks. 
178
179 GPUs  only work on data filled in their global memory and the final results of their kernel
180 executions must be communicated to their hosts (CPUs). Hence, the data must be transferred
181 \emph{in} and \emph{out} of the GPU. However, the speed of memory copy between the CPU and
182 the GPU is slower than the memory copy speed of GPUs. Accordingly, it is necessary to limit
183 the transfer of data between the GPU and its host.
184
185
186 %%--------------------%%
187 %%      SECTION 4     %%
188 %%--------------------%%
189 \section{{GMRES} method}
190 \label{sec:04}
191
192 The generalized minimal residual method (GMRES) is an iterative method designed by Saad and Schultz in 1986~\cite{Saa86}. It is a generalization of the minimal residual method (MNRES)~\cite{Pai75} to deal with asymmetric and non Hermitian problems and indefinite symmetric problems. 
193
194 Let us consider the following sparse linear system of $n$ equations:
195 \begin{equation}
196   Ax = b,
197 \label{eq:01}
198 \end{equation}
199 where $A\in\mathbb{R}^{n\times n}$ is a sparse square and nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side vector. The main idea of the GMRES method is to find a sequence of solutions $\{x_k\}_{k\in\mathbb{N}}$ which minimizes at best the residual $r_k=b-Ax_k$. The solution $x_k$ is computed in a Krylov sub-space $\mathcal{K}_k(A,v_1)$:
200 \begin{equation}
201 \begin{array}{ll}
202   \mathcal{K}_{k}(A,v_{1}) \equiv \text{span}\{v_{1}, Av_{1}, A^{2}v_{1},..., A^{k-1}v_{1}\}, & v_{1}=\frac{r_{0}}{\|r_{0}\|_{2}},
203 \end{array} 
204 \end{equation}
205 such that the Petrov-Galerkin condition is satisfied:
206 \begin{equation}
207   r_{k} \perp A\mathcal{K}_{k}(A, v_{1}).
208 \end{equation}
209
210 Algorithm~\ref{alg:01} illustrates the main key points of the GMRES method with restarts. The linear system to be solved in this algorithm is left-preconditioned where $M$ is the preconditioning matrix. The Arnoldi process~\cite{Arn51} is used (from line~$7$ to line~$17$ of algorithm~\ref{alg:01}) to construct an orthonormal basis $V_m$ and a Hessenberg matrix $\bar{H}_m$ of order $(m+1)\times m$ such that $m\ll n$. Then, the least-squares problem is solved (line~$18$) to find the vector $y\in\mathbb{R}^m$ which minimizes the residual. Finally, the solution $x_m$ is computed in the Krylov sub-space spanned by $V_m$ (line~$19$). In practice, the GMRES algorithm stops when the Euclidean norm of the residual is small enough and/or the maximum number of iterations is reached.
211 %%% END %%%
212
213 \begin{algorithm}[!h]
214   \newcommand{\Convergence}{\mathit{convergence}}
215   \newcommand{\False}{\mathit{false}}
216   \newcommand{\True}{\mathit{true}}
217   %\SetAlgoLined
218   \KwIn{$A$ (matrix), $b$ (vector), $M$ (preconditioning matrix),
219 $x_{0}$ (initial guess), $\varepsilon$ (tolerance threshold), $\Max$ (maximum number of iterations),
220 $m$ (number of iterations of the Arnoldi process)}
221   \KwOut{$x$ (solution vector)}
222   \BlankLine
223   $r_{0} \leftarrow M^{-1}(b - Ax_{0})$\;
224   $\beta \leftarrow \|r_{0}\|_{2}$\;
225   $\alpha \leftarrow \|M^{-1}b\|_{2}$\;
226   $\Convergence \leftarrow \False$\;
227   $k \leftarrow 1$\;
228   \BlankLine
229   \While{$(\neg \Convergence)$}{
230     $v_{1} \leftarrow r_{0} / \beta$\;
231     \For{$j=1$ {\bf to} $m$}{
232       $w_{j} \leftarrow M^{-1}Av_{j}$\;
233       \For{$i=1$ {\bf to} $j$}{
234         $h_{i,j} \leftarrow (w_{j},v_{i})$\;
235         $w_{j} \leftarrow w_{j} - h_{i,j} \times v_{i}$\;
236       }
237       $h_{j+1,j} \leftarrow \|w_{j}\|_{2}$\;
238       $v_{j+1} \leftarrow w_{j} / h_{j+1,j}$\;
239     }
240     \BlankLine
241     Put $V_{m}=\{v_{j}\}_{1\leq j \leq m}$ and $\bar{H}_{m}=(h_{i,j})$ Hessenberg matrix of order $(m+1)\times m$\;
242     Solve the least-squares problem of size $m$: $\displaystyle\min_{y\in\mathbb{R}^{m}} \|\beta e_{1}-\bar{H}_{m}y\|_{2}$\;
243     \BlankLine
244     $x_{m} \leftarrow x_{0} + V_{m}y$\;
245     $r_{m} \leftarrow M^{-1}(b-Ax_{m})$\;
246     $\beta \leftarrow \|r_{m}\|_{2}$\;
247     \BlankLine
248     \eIf{$(\frac{\beta}{\alpha}<\varepsilon)$ {\bf or} $(k\geq \Max)$}{
249       $\Convergence \leftarrow \True$\;
250     }{
251       $x_{0} \leftarrow x_{m}$\;
252       $r_{0} \leftarrow r_{m}$\;
253       $k \leftarrow k + 1$\;
254     }
255   }
256 \caption{Left-preconditioned GMRES algorithm with restarts}
257 \label{alg:01}
258 \end{algorithm}
259
260
261
262 %%--------------------%%
263 %%      SECTION 5     %%
264 %%--------------------%%
265 \section{Parallel GMRES method on {GPU} clusters}
266 \label{sec:05}
267
268 \subsection{Parallel implementation on a GPU cluster}
269 \label{sec:05.01}
270 The implementation of the GMRES algorithm on a GPU cluster is performed by using
271 a parallel heterogeneous programming. We use the programming language CUDA for the
272 GPUs and the parallel environment MPI for the distribution of the computations between
273 the GPU computing nodes. In this work, a GPU computing node is composed of a GPU and
274 a CPU core managed by a MPI process.
275
276 Let us consider a cluster composed of $p$ GPU computing nodes. First, the sparse linear
277 system~(\ref{eq:01}) is split into $p$ sub-linear systems, each is attributed to a GPU
278 computing node. We partition row-by-row the sparse matrix $A$ and both vectors $x$ and
279 $b$ in $p$ parts (see Figure~\ref{fig:01}). The data issued from the partitioning operation
280 are off-loaded on the GPU global memories to be proceeded by the GPUs. Then, all the
281 computing nodes of the GPU cluster execute the same GMRES iterative algorithm but on
282 different data. Finally, the GPU computing nodes synchronize their computations by using
283 MPI communication routines to solve the global sparse linear system. In what follows,
284 the computing nodes sharing data are called the neighboring nodes.
285
286 \begin{figure}
287 \centering
288   \includegraphics[width=80mm,keepaspectratio]{Figures/partition}
289 \caption{Data partitioning of the sparse matrix $A$, the solution vector $x$ and the right-hand side $b$ in $4$ partitions}
290 \label{fig:01}
291 \end{figure}
292
293 In order to exploit the computing power of the GPUs, we have to execute maximum computations
294 on GPUs to avoid the data transfers between the GPU and its host (CPU), and to maximize the
295 GPU cores utilization to hide global memory access latency. The implementation of the GMRES
296 algorithm is performed by executing the functions operating on vectors and matrices as kernels
297 on GPUs. These operations are often easy to parallelize and more efficient on parallel architectures
298 when they operate on large vectors. We use the fastest routines of the CUBLAS library
299 (CUDA Basic Linear Algebra Subroutines) to implement the dot product (\verb+cublasDdot()+),
300 the Euclidean norm (\verb+cublasDnrm2()+) and the AXPY operation (\verb+cublasDaxpy()+).
301 In addition, we have coded in CUDA a kernel for the scalar-vector product (lines~$7$ and~$15$
302 of Algorithm~\ref{alg:01}), a kernel for solving the least-squares problem (line~$18$) and a
303 kernel for solution vector updates (line~$19$).
304
305 The solution of the least-squares problem in the GMRES algorithm is based on:
306 \begin{itemize}
307   \item a QR factorization of the Hessenberg matrix $\bar{H}$ by using plane rotations and,
308   \item backward-substitution method to compute the vector $y$ minimizing the residual.
309 \end{itemize}
310 This operation is not easy to parallelize and it is not interesting to implement it on GPUs. 
311 However, the size $m$ of the linear least-squares problem to solve in the GMRES method with
312 restarts is very small. So, this problem is solved in sequential by one GPU thread.
313
314 The most important operation in the GMRES method is the sparse matrix-vector multiplication.
315 It is quite expensive for large size matrices in terms of execution time and memory space. In
316 addition, it performs irregular memory accesses to read the nonzero values of the sparse matrix,
317 implying non coalescent accesses to the GPU global memory which slow down the performances of
318 the GPUs. So we use the HYB kernel developed and optimized by NVIDIA~\cite{CUSP} which gives on
319 average the best performance in sparse matrix-vector multiplications on GPUs~\cite{Bel09}. The
320 HYB (Hybrid) storage format is the combination of two sparse storage formats: Ellpack format
321 (ELL) and Coordinate format (COO). It stores a typical number of nonzero values per row in ELL
322 format and remaining entries of exceptional rows in COO format. It combines the efficiency of
323 ELL, due to the regularity of its memory accessing and the flexibility of COO which is insensitive
324 to the matrix structure. 
325
326 In the parallel GMRES algorithm, the GPU computing nodes must exchange between them their shared data in
327 order to construct the global vector necessary to compute the parallel sparse matrix-vector
328 multiplication (SpMV). In fact, each computing node has locally the vector elements corresponding
329 to the rows of its sparse sub-matrix and, in order to compute its part of the SpMV, it also
330 requires the vector elements of its neighboring nodes corresponding to the column indices in
331 which its local sub-matrix has nonzero values. Consequently, each computing node manages a global
332 vector composed of a local vector of size $\frac{n}{p}$ and a shared vector of size $S$:
333 \begin{equation}
334   S = bw - \frac{n}{p},
335 \label{eq:11}
336 \end{equation}
337 where $\frac{n}{p}$ is the size of the local vector and $bw$ is the bandwidth of the local sparse
338 sub-matrix which represents the number of columns between the minimum and the maximum column indices
339 (see Figure~\ref{fig:01}). In order to improve memory accesses, we use the texture memory to
340 cache elements of the global vector.
341
342 On a GPU cluster, the exchanges of the shared vectors elements between the neighboring nodes are
343 performed as follows:
344 \begin{itemize}
345   \item at the level of the sending node: data transfers of the shared data from the GPU global memory
346 to the CPU memory by using the CUBLAS communication routine \verb+cublasGetVector()+,
347   \item data exchanges between the CPUs by the MPI communication routine \verb+MPI_Alltoallv()+ and,
348   \item at the level of the receiving node: data transfers of the received shared data from the CPU
349 memory to the GPU global memory by using CUBLAS communication routine \verb+cublasSetVector()+. 
350 \end{itemize}  
351
352 \subsection{Experimentations}
353 \label{sec:05.02}
354 The experiments are done on a cluster composed of six machines interconnected by an Infiniband network
355 of $20$~GB/s. Each machine is a Xeon E5530 Quad-Core running at $2.4$~GHz. It provides $12$~GB of RAM
356 memory with a memory bandwidth of $25.6$~GB/s and it is equipped with two Tesla C1060 GPUs. Each GPU
357 is composed of $240$ cores running at $1.3$ GHz and has $4$~GB of global memory with a memory bandwidth
358 of $102$~GB/s. The GPU is connected to the CPU via a PCI-Express 16x Gen2.0 with a throughput of $8$~GB/s.
359 Figure~\ref{fig:02} shows the general scheme of the GPU cluster.
360
361 \begin{figure}[!h]
362 \centering
363   \includegraphics[width=80mm,keepaspectratio]{Figures/clusterGPU}
364 \caption{A cluster composed of six machines, each equipped with two Tesla C1060 GPUs}
365 \label{fig:02}
366 \end{figure}
367
368 Scientific Linux 5.10, with Linux version 2.6.18, is installed on the six machines. The C programming language is used for
369 coding the GMRES algorithm on both the CPU and the GPU versions. CUDA version 4.0~\cite{ref19} is used for programming 
370 the GPUs, using CUBLAS library~\cite{ref37} to deal with the functions operating on vectors. Finally, MPI routines
371 of OpenMPI 1.3.3 are used to carry out the communication between the CPU cores.
372
373 The experiments are done on linear systems associated to sparse matrices chosen from the Davis collection of the
374 University of Florida~\cite{Dav97}. They are matrices arising in real-world applications. Table~\ref{tab:01} shows
375 the main characteristics of these sparse matrices and Figure~\ref{fig:03} shows their sparse structures. For
376 each matrix, we give the number of rows (column~$3$ in Table~\ref{tab:01}), the number of nonzero values (column~$4$)
377 and the bandwidth (column~$5$).
378
379 \begin{table}
380 \begin{center}
381 \begin{tabular}{|c|c|r|r|r|} 
382 \hline
383 Matrix type                 & Name              & \# Rows   & \# Nonzeros  & Bandwidth \\\hline \hline
384 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 101 492   & 1 647 264    & 100 464        \\
385                             & ecology2          & 999 999   & 4 995 991    & 2 001          \\ 
386                             & finan512          & 74 752    & 596 992      & 74 725         \\ 
387                             & G3\_circuit       & 1 585 478 & 7 660 826    & 1 219 059      \\
388                             & shallow\_water2   & 81 920    & 327 680      & 58 710         \\
389                             & thermal2          & 1 228 045 & 8 580 313    & 1 226 629      \\ \hline \hline
390 \multirow{6}{*}{Asymmetric} & cage13            & 445 315   & 7 479 343    & 318 788        \\
391                             & crashbasis        & 160 000   & 1 750 416    & 120 202        \\
392                             & FEM\_3D\_thermal2 & 147 900   & 3 489 300    & 117 827        \\
393                             & language          & 399 130   & 1 216 334    & 398 622        \\
394                             & poli\_large       & 15 575    & 33 074       & 15 575         \\
395                             & torso3            & 259 156   & 4 429 042    & 216 854        \\ \hline
396 \end{tabular}
397 \caption{Main characteristics of the sparse matrices chosen from the Davis collection}
398 \label{tab:01}
399 \end{center}
400 \end{table}
401
402 \begin{figure}
403 \centering
404   \includegraphics[width=120mm,keepaspectratio]{Figures/matrices}
405 \caption{Structures of the sparse matrices chosen from the Davis collection}
406 \label{fig:03}
407 \end{figure}
408
409 All the experiments are performed on double-precision data. The parameters of the parallel
410 GMRES algorithm are as follows: the tolerance threshold $\varepsilon=10^{-12}$, the maximum
411 number of iterations $\Max=500$, the Arnoldi process is limited to $m=16$ iterations, the elements 
412 of the guess solution $x_0$ is initialized to $0$ and those of the right-hand side vector are
413 initialized to $1$. For simplicity's sake, we chose the matrix preconditioning $M$ as the
414 main diagonal of the sparse matrix $A$. Indeed, it allows us to easily compute the required inverse
415 matrix $M^{-1}$ and it provides relatively good preconditioning in most cases. Finally, we set 
416 the size of a thread-block in GPUs to $512$ threads. 
417  It should be noted that the same optimizations are performed on the CPU version and on the GPU version of the parallel GMRES algorithm.
418
419 \begin{table}[!h]
420 \begin{center}
421 \begin{tabular}{|c|c|c|c|c|c|c|} 
422 \hline
423 Matrix            & $\Time{cpu}$  & $\Time{gpu}$  & $\tau$  & \# $\Iter$ & $\Prec$ & $\Delta$   \\ \hline \hline
424 2cubes\_sphere    & 0.234 s     & 0.124 s      & 1.88  & 21     & 2.10e-14      & 3.47e-18 \\
425 ecology2          & 0.076 s     & 0.035 s      & 2.15  & 21     & 4.30e-13      & 4.38e-15 \\
426 finan512          & 0.073 s     & 0.052 s      & 1.40  & 17     & 3.21e-12      & 5.00e-16 \\
427 G3\_circuit       & 1.016 s     & 0.649 s      & 1.56  & 22     & 1.04e-12      & 2.00e-15 \\
428 shallow\_water2   & 0.061 s     & 0.044 s      & 1.38  & 17     & 5.42e-22      & 2.71e-25 \\
429 thermal2          & 1.666 s     & 0.880 s      & 1.89  & 21     & 6.58e-12      & 2.77e-16 \\ \hline \hline
430 cage13            & 0.721 s     & 0.338 s      & 2.13  & 26     & 3.37e-11      & 2.66e-15 \\
431 crashbasis        & 1.349 s     & 0.830 s      & 1.62  & 121    & 9.10e-12      & 6.90e-12 \\
432 FEM\_3D\_thermal2 & 0.797 s     & 0.419 s      & 1.90  & 64     & 3.87e-09      & 9.09e-13 \\
433 language          & 2.252 s     & 1.204 s      & 1.87  & 90     & 1.18e-10      & 8.00e-11 \\
434 poli\_large       & 0.097 s     & 0.095 s      & 1.02  & 69     & 4.98e-11      & 1.14e-12 \\
435 torso3            & 4.242 s     & 2.030 s      & 2.09  & 175    & 2.69e-10      & 1.78e-14 \\ \hline
436 \end{tabular}
437 \caption{Performances of the parallel GMRES algorithm on a cluster of 24 CPU cores vs. a cluster of 12 GPUs}
438 \label{tab:02}
439 \end{center}
440 \end{table}
441
442 In Table~\ref{tab:02}, we give the performances of the parallel GMRES algorithm for solving the linear
443 systems associated to the sparse matrices shown in Table~\ref{tab:01}. The second and third columns show
444 the execution times in seconds obtained on a cluster of 24 CPU cores and on a cluster of 12 GPUs, respectively.
445 The fourth column shows the ratio $\tau$ between the CPU time $\Time{cpu}$ and the GPU time $\Time{gpu}$ that
446 is computed as follows:
447 \begin{equation}
448   \tau = \frac{\Time{cpu}}{\Time{gpu}}.
449 \end{equation}
450 From these ratios, we can notice that the use of many GPUs is not interesting to solve small sparse linear
451 systems. Solving these sparse linear systems on a cluster of 12 GPUs is as fast as on a cluster of 24 CPU
452 cores. Indeed, the small sizes of the sparse matrices do not allow to maximize the utilization of the GPU
453 cores of the cluster. The fifth, sixth and seventh columns show, respectively, the number of iterations performed
454 by the parallel GMRES algorithm to converge, the precision of the solution, $\Prec$, computed on the GPU
455 cluster and the difference, $\Delta$, between the solutions computed on the GPU and the GPU clusters. The
456 last two parameters are used to validate the results obtained on the GPU cluster and they are computed as
457 follows:
458 \begin{equation}
459   \begin{aligned}
460     \Prec &= \|M^{-1}(b-Ax^{gpu})\|_{\infty}, \\
461     \Delta &= \|x^{cpu}-x^{gpu}\|_{\infty},
462   \end{aligned}
463 \end{equation}
464 where $x^{cpu}$ and $x^{gpu}$ are the solutions computed, respectively, on the CPU cluster and on the GPU cluster.
465 We can see that the precision of the solutions computed on the GPU cluster are sufficient, they are about $10^{-10}$,
466 and the parallel GMRES algorithm computes almost the same solutions in both CPU and GPU clusters, with $\Delta$ varying
467 from $10^{-11}$ to $10^{-25}$.
468
469 Afterwards, we evaluate the performances of the parallel GMRES algorithm for solving large linear systems. We have
470 developed in C programming language a generator of large sparse matrices having a band structure which arises 
471 in  most numerical problems. This generator uses the sparse matrices of the Davis collection as the initial
472 matrices to build the large band matrices. It is executed in parallel by all the MPI processes of the cluster
473 so that each process constructs its own sub-matrix as a rectangular block of the global sparse matrix. Each process
474 $i$ computes the size $n_i$ and the offset $\Offset_i$ of its sub-matrix in the global sparse matrix according to the
475 size $n$ of the linear system to be solved and the number of the GPU computing nodes $p$ as follows:
476 \begin{equation}
477   n_i = \frac{n}{p},
478 \end{equation} 
479 \begin{equation}
480   \Offset_i =
481   \begin{cases}
482     0 & \text{if $i=0$,}\\
483     \Offset_{i-1}+n_{i-1} & \text{otherwise.}
484   \end{cases}
485 \end{equation} 
486 So each process $i$ performs several copies of the same initial matrix chosen from the Davis collection and it
487 puts all these copies on the main diagonal of the global matrix in order to construct a band matrix. Moreover,
488 it fulfills the empty spaces between two successive copies by small copies, \textit{lower\_copy} and \textit{upper\_copy},
489 of the same initial matrix. Figure~\ref{fig:04} shows a generation of a sparse bended matrix by four computing nodes.
490
491 \begin{figure}
492 \centering
493   \includegraphics[width=100mm,keepaspectratio]{Figures/generation}
494 \caption{Example of the generation of a large sparse and band matrix by four computing nodes.}
495 \label{fig:04}
496 \end{figure}
497
498 Table~\ref{tab:03} shows the main characteristics (the number of nonzero values and the bandwidth) of the
499 large sparse matrices generated from those of the Davis collection. These matrices are associated to the
500 linear systems of 25 million of unknown values (each generated sparse matrix has 25 million rows). In Table~\ref{tab:04}
501 we show the performances of the parallel GMRES algorithm for solving large linear systems associated to the
502 sparse band matrices of Table~\ref{tab:03}. The fourth column gives the ratio between the execution time
503 spent on a cluster of 24 CPU cores and that spent on a cluster of 12 GPUs. We can notice from these ratios
504 that for solving large sparse matrices the GPU cluster is more efficient (about 5 times faster) than the CPU
505 cluster. The computing power of the GPUs allows to accelerate the computation of the functions operating
506 on large vectors of the parallel GMRES algorithm.
507
508 \begin{table}[!h]
509 \begin{center}
510 \begin{tabular}{|c|c|r|r|} 
511 \hline
512 Matrix type                 & Name              & \# nonzeros & Bandwidth \\ \hline \hline
513 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 413 703 602 & 198 836   \\
514                             & ecology2          & 124 948 019 & 2 002     \\ 
515                             & finan512          & 278 175 945 & 123 900   \\
516                             & G3\_circuit       & 125 262 292 & 1 891 887 \\            
517                             & shallow\_water2   & 100 235 292 & 62 806    \\
518                             & thermal2          & 175 300 284 & 2 421 285 \\ \hline \hline
519 \multirow{6}{*}{Asymmetric} & cage13            & 435 770 480 & 352 566   \\
520                             & crashbasis        & 409 291 236 & 200 203   \\
521                             & FEM\_3D\_thermal2 & 595 266 787 & 206 029   \\
522                             & language          & 76 912 824  & 398 626   \\
523                             & poli\_large       & 53 322 580  & 15 576    \\
524                             & torso3            & 433 795 264 & 328 757   \\ \hline
525 \end{tabular}
526 \caption{Main characteristics of the sparse and band matrices generated from the sparse matrices of the Davis collection.}
527 \label{tab:03}
528 \end{center}
529 \end{table}
530
531
532 \begin{table}[!h]
533 \begin{center}
534 \begin{tabular}{|c|c|c|c|c|c|c|} 
535 \hline
536 Matrix            & $\Time{cpu}$ & $\Time{gpu}$ & $\tau$ & \# $\Iter$& $\Prec$   & $\Delta$   \\ \hline \hline
537 2cubes\_sphere    & 3.683 s     & 0.870 s      & 4.23   & 21       & 2.11e-14 & 8.67e-18 \\
538 ecology2          & 2.570 s     & 0.424 s      & 6.06   & 21       & 4.88e-13 & 2.08e-14 \\
539 finan512          & 2.727 s     & 0.533 s      & 5.11   & 17       & 3.22e-12 & 8.82e-14 \\
540 G3\_circuit       & 4.656 s     & 1.024 s      & 4.54   & 22       & 1.04e-12 & 5.00e-15 \\
541 shallow\_water2   & 2.268 s     & 0.384 s      & 5.91   & 17       & 5.54e-21 & 7.92e-24 \\
542 thermal2          & 4.650 s     & 1.130 s      & 4.11   & 21       & 8.89e-12 & 3.33e-16 \\ \hline \hline
543 cage13            & 6.068 s     & 1.054 s      & 5.75   & 26       & 3.29e-11 & 1.59e-14 \\
544 crashbasis        & 25.906 s    & 4.569 s      & 5.67   & 135      & 6.81e-11 & 4.61e-15 \\
545 FEM\_3D\_thermal2 & 13.555 s    & 2.654 s      & 5.11   & 64       & 3.88e-09 & 1.82e-12 \\
546 language          & 13.538 s    & 2.621 s      & 5.16   & 89       & 2.11e-10 & 1.60e-10 \\
547 poli\_large       & 8.619 s     & 1.474 s      & 5.85   & 69       & 5.05e-11 & 6.59e-12 \\
548 torso3            & 35.213 s    & 6.763 s      & 5.21   & 175      & 2.69e-10 & 2.66e-14 \\ \hline
549 \end{tabular}
550 \caption{Performances of the parallel GMRES algorithm for solving large sparse linear systems associated
551 to band matrices on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.}
552 \label{tab:04}
553 \end{center}
554 \end{table}
555
556
557 %%--------------------%%
558 %%      SECTION 6     %%
559 %%--------------------%%
560 \section{Minimization of communications}
561 \label{sec:06}
562 The parallel sparse matrix-vector multiplication requires  data exchanges between the GPU computing nodes
563 to construct the global vector. However, a GPU cluster requires communications between the GPU nodes and the
564 data transfers between the GPUs and their hosts CPUs. In fact, a communication between two GPU nodes implies:  
565 a data transfer from the GPU memory to the CPU memory at the sending node, a MPI communication between the CPUs
566 of two GPU nodes, and a data transfer from the CPU memory to the GPU memory at the receiving node. Moreover,
567 the data transfers between a GPU and a CPU are considered as the most expensive communications on a GPU cluster.
568 For example in our GPU cluster, the data throughput between a GPU and a CPU is of 8 GB/s which is about twice
569 lower than the data transfer rate between CPUs (20 GB/s) and 12 times lower than the memory bandwidth of the
570 GPU global memory (102 GB/s). In this section, we propose two solutions to improve the execution time of the
571 parallel GMRES algorithm on GPU clusters.
572
573 \subsection{Compressed storage format of the sparse vectors}
574 \label{sec:06.01}
575 In Section~\ref{sec:05.01}, the SpMV multiplication uses a global vector having a size equivalent to the matrix
576 bandwidth (see Formula~\ref{eq:11}). However, we can notice that a SpMV multiplication does not often need all
577 the vector elements of the global vector composed of the local and shared sub-vectors. For example in Figure~\ref{fig:01},
578  node 1 only needs  a single vector element from  node 0 (element 1), two elements from node 2 (elements 8
579 and 9) and two elements from  node 3 (elements 13 and 14). Therefore to reduce the communication overheads
580 of the unused vector elements, the GPU computing nodes must exchange between them only the vector elements necessary
581 to perform their local sparse matrix-vector multiplications.
582
583 \begin{figure}[!h]
584 \centering
585   \includegraphics[width=120mm,keepaspectratio]{Figures/compress}
586 \caption{Example of data exchanges between node 1 and its neighbors 0, 2 and 3.}
587 \label{fig:05}
588 \end{figure}
589
590 \begin{figure}[!h]
591 \centering
592   \includegraphics[width=100mm,keepaspectratio]{Figures/reorder}
593 \caption{Reordering of the columns of a local sparse matrix.}
594 \label{fig:06}
595 \end{figure}
596
597 We propose to use a compressed storage format of the sparse global vector. In Figure~\ref{fig:05}, we show an
598 example of the data exchanges between node 1 and its neighbors to construct the compressed global vector.
599 First, the neighboring nodes 0, 2 and 3 determine the vector elements needed by node 1 and, then, they send
600 only these elements to it. Node 1 receives these shared elements in a compressed vector. However to compute
601 the sparse matrix-vector multiplication, it must first copy the received elements to the corresponding indices
602 in the global vector. In order to avoid this process at each iteration, we propose to reorder the columns of the
603 local sub-matrices so as to use the shared vectors in their compressed storage format (see Figure~\ref{fig:06}).
604 For performance purposes, the computation of the shared data to send to the neighboring nodes is performed
605 by the GPU as a kernel. In addition, we use the MPI point-to-point communication routines: a blocking send routine
606 \verb+MPI_Send()+ and a nonblocking receive routine \verb+MPI_Irecv()+.
607
608 Table~\ref{tab:05} shows the performances of the parallel GMRES algorithm using the compressed storage format
609 of the sparse global vector. The results are obtained from solving large linear systems associated to the sparse
610 band matrices presented in Table~\ref{tab:03}. We can see from Table~\ref{tab:05} that the execution times 
611 of the parallel GMRES algorithm on a cluster of 12 GPUs are improved by about 38\% compared to those presented
612 in Table~\ref{tab:04}. In addition, the ratios between the execution times spent on the cluster of 24 CPU cores
613 and those spent on the cluster of 12 GPUs have increased. Indeed, the reordering of the sparse sub-matrices and
614 the use of a compressed storage format for the sparse vectors minimize the communication overheads between the
615 GPU computing nodes.
616
617 \begin{table}[!h]
618 \begin{center}
619 \begin{tabular}{|c|c|c|c|c|c|c|} 
620 \hline
621 Matrix            & $\Time{cpu}$ & $\Time{gpu}$ & $\tau$& \# $\Iter$& $\Prec$   & $\Delta$   \\ \hline \hline
622 2cubes\_sphere    & 3.597 s     & 0.514 s      & 6.99  & 21       & 2.11e-14 & 8.67e-18 \\
623 ecology2          & 2.549 s     & 0.288 s      & 8.83  & 21       & 4.88e-13 & 2.08e-14 \\
624 finan512          & 2.660 s     & 0.377 s      & 7.05  & 17       & 3.22e-12 & 8.82e-14 \\
625 G3\_circuit       & 3.139 s     & 0.480 s      & 6.53  & 22       & 1.04e-12 & 5.00e-15 \\
626 shallow\_water2   & 2.195 s     & 0.253 s      & 8.68  & 17       & 5.54e-21 & 7.92e-24 \\
627 thermal2          & 3.206 s     & 0.463 s      & 6.93  & 21       & 8.89e-12 & 3.33e-16 \\ \hline \hline
628 cage13            & 5.560 s     & 0.663 s      & 8.39  & 26       & 3.29e-11 & 1.59e-14 \\
629 crashbasis        & 25.802 s    & 3.511 s      & 7.35  & 135      & 6.81e-11 & 4.61e-15 \\
630 FEM\_3D\_thermal2 & 13.281 s    & 1.572 s      & 8.45  & 64       & 3.88e-09 & 1.82e-12 \\
631 language          & 12.553 s    & 1.760 s      & 7.13  & 89       & 2.11e-10 & 1.60e-10 \\
632 poli\_large       & 8.515 s     & 1.053 s      & 8.09  & 69       & 5.05e-11 & 6.59e-12 \\
633 torso3            & 31.463 s    & 3.681 s      & 8.55  & 175      & 2.69e-10 & 2.66e-14 \\ \hline
634 \end{tabular}
635 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
636 vectors for solving large sparse linear systems associated to band matrices on a cluster of 24 CPU cores vs.
637 a cluster of 12 GPUs.}
638 \label{tab:05}
639 \end{center}
640 \end{table}
641
642 \subsection{Hypergraph partitioning}
643 \label{sec:06.02}
644 In this section, we use another structure of the sparse matrices. We are interested in sparse matrices
645 whose nonzero values are distributed along their large bandwidths. We developed in C programming
646 language a generator of sparse matrices having five bands (see Figure~\ref{fig:07}). The principle of
647 this generator is the same as the one presented in Section~\ref{sec:05.02}. However, the copies made from the
648 initial sparse matrix, chosen from the Davis collection, are placed on the main diagonal and on two
649 off-diagonals on the left and right of the main diagonal. Table~\ref{tab:06} shows the main characteristics
650 of sparse matrices of size 25 million of rows and generated from those of the Davis collection. We can
651 see in the fourth column that the bandwidths of these matrices are as large as their sizes.
652
653 \begin{figure}[h!]
654 \centering
655   \includegraphics[width=100mm,keepaspectratio]{Figures/generation_1}
656 \caption{Example of the generation of a large sparse matrix having five bands by four computing nodes.}
657 \label{fig:07}
658 \end{figure}
659
660 \begin{table}[!h]
661 \begin{center}
662 \begin{tabular}{|c|c|r|r|} 
663 \hline
664 Matrix type                 & Name              & \# nonzeros   & Bandwidth \\ \hline \hline
665 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 829 082 728   & 24 999 999     \\
666                             & ecology2          & 254 892 056   & 25 000 000     \\ 
667                             & finan512          & 556 982 339   & 24 999 973     \\ 
668                             & G3\_circuit       & 257 982 646   & 25 000 000     \\
669                             & shallow\_water2   & 200 798 268   & 25 000 000     \\
670                             & thermal2          & 359 340 179   & 24 999 998     \\ \hline \hline
671 \multirow{6}{*}{Asymmetric} & cage13            & 879 063 379   & 24 999 998     \\
672                             & crashbasis        & 820 373 286   & 24 999 803     \\
673                             & FEM\_3D\_thermal2 & 1 194 012 703 & 24 999 998     \\
674                             & language          & 155 261 826   & 24 999 492     \\
675                             & poli\_large       & 106 680 819   & 25 000 000     \\
676                             & torso3            & 872 029 998   & 25 000 000     \\ \hline
677 \end{tabular}
678 \caption{Main characteristics of the sparse matrices having five band and generated from the sparse matrices of the Davis collection.}
679 \label{tab:06}
680 \end{center}
681 \end{table}
682
683 In Table~\ref{tab:07} we give the performances of the parallel GMRES algorithm on the CPU and GPU
684 clusters for solving large linear systems associated to the sparse matrices shown in Table~\ref{tab:06}.
685 We can notice from the ratios given in the fourth column that solving sparse linear systems associated
686 to matrices having large bandwidth on the GPU cluster is as fast as on the CPU cluster. This is due 
687 to the large total communication volume necessary to synchronize the computations over the cluster.
688 In fact, the naive partitioning row-by-row or column-by-column of this type of sparse matrices links
689 a GPU node to many neighboring nodes and produces a significant number of data dependencies between
690 the different GPU nodes.   
691
692 \begin{table}[!h]
693 \begin{center}
694 \begin{tabular}{|c|c|c|c|c|c|c|} 
695 \hline
696 Matrix            & $\Time{cpu}$ & $\Time{gpu}$ & $\tau$ & \# $\Iter$& $\Prec$ & $\Delta$   \\ \hline \hline
697 2cubes\_sphere    & 15.963 s    & 7.250 s      & 2.20  & 58     & 6.23e-16 & 3.25e-19 \\
698 ecology2          & 3.549 s     & 2.176 s      & 1.63  & 21     & 4.78e-15 & 1.06e-15 \\
699 finan512          & 3.862 s     & 1.934 s      & 1.99  & 17     & 3.21e-14 & 8.43e-17 \\
700 G3\_circuit       & 4.636 s     & 2.811 s      & 1.65  & 22     & 1.08e-14 & 1.77e-16 \\
701 shallow\_water2   & 2.738 s     & 1.539 s      & 1.78  & 17     & 5.54e-23 & 3.82e-26 \\
702 thermal2          & 5.017 s     & 2.587 s      & 1.94  & 21     & 8.25e-14 & 4.34e-18 \\ \hline \hline
703 cage13            & 9.315 s     & 3.227 s      & 2.89  & 26     & 3.38e-13 & 2.08e-16 \\
704 crashbasis        & 35.980 s    & 14.770 s     & 2.43  & 127    & 1.17e-12 & 1.56e-17 \\
705 FEM\_3D\_thermal2 & 24.611 s    & 7.749 s      & 3.17  & 64     & 3.87e-11 & 2.84e-14 \\
706 language          & 16.859 s    & 9.697 s      & 1.74  & 89     & 2.17e-12 & 1.70e-12 \\
707 poli\_large       & 10.200 s    & 6.534 s      & 1.56  & 69     & 5.14e-13 & 1.63e-13 \\
708 torso3            & 49.074 s    & 19.397 s     & 2.53  & 175    & 2.69e-12 & 2.77e-16 \\ \hline
709 \end{tabular}
710 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
711 vectors for solving large sparse linear systems associated to matrices having five bands on a cluster
712 of 24 CPU cores vs. a cluster of 12 GPUs.}
713 \label{tab:07}
714 \end{center}
715 \end{table}
716
717 We propose to use a hypergraph partitioning method which is well adapted to numerous structures 
718 of sparse matrices~\cite{Cat99}. Indeed, it can well model the communications between the computing
719 nodes especially for the asymmetric and rectangular matrices. It gives in most cases good reductions
720 of the total communication volume. Nevertheless, it is more expensive in terms of execution time and
721 memory space consumption than the partitioning method based on graphs.  
722
723 The sparse matrix $A$ of the linear system to be solved is modelled as a hypergraph
724 $\mathcal{H}=(\mathcal{V},\mathcal{E})$ as follows:
725 \begin{itemize}
726 \item each matrix row $i$ ($0\leq i<n$) corresponds to a vertex $v_i\in\mathcal{V}$,
727 \item each matrix column $j$ ($0\leq j<n$) corresponds to a hyperedge $e_j\in\mathcal{E}$, such that:
728 $\forall a_{ij}$ is a nonzero value of the matrix $A$, $v_i\in pins[e_j]$,
729 \item $w_i$ is the weight of vertex $v_i$,
730 \item $c_j$ is the cost of hyperedge $e_j$.  
731 \end{itemize}
732 A $K$-way partitioning of a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$ is defined as a set 
733 of $K$ pairwise disjoint non-empty subsets (or parts) of the vertex set $\mathcal{V}$: $\mathcal{P}=\{\mathcal{V}_1,\ldots,\mathcal{V}_k\}$,
734 such that $\mathcal{V}=\displaystyle\cup_{k=1}^K\mathcal{V}_{k}$. Each computing node is in charge of
735 a vertex subset. Figure~\ref{fig:08} shows an example of a hypergraph partitioning of a sparse matrix
736 of size $(9\times 9)$ into three parts. The circles and squares correspond, respectively, to the vertices
737 and hyperedges of the hypergraph. The solid squares define the cut hyperedges connecting at least two
738 different parts. The connectivity $\lambda_j$ denotes the number of different parts spanned by the cut
739 hyperedge $e_j$.
740
741 \begin{figure}
742 \centering
743   \includegraphics[width=130mm,keepaspectratio]{Figures/hypergraph}
744 \caption{A hypergraph partitioning of a sparse matrix between three computing nodes.}
745 \label{fig:08}
746 \end{figure}
747
748 The cut hyperedges model the communications between the different GPU computing nodes in the cluster,
749 necessary to perform the SpMV multiplication. Indeed, each hyperedge $e_j$ defines a set of atomic
750 computations $b_i\leftarrow b_i+a_{ij}x_j$ of the SpMV multiplication which needs the $j^{th}$ element
751 of  vector $x$. Therefore pins of hyperedge $e_j$ ($pins[e_j]$) denote the set of matrix rows requiring
752 the same vector element $x_j$. For example in Figure~\ref{fig:08}, hyperedge $e_9$ whose pins are:
753 $pins[e_9]=\{v_2,v_5,v_9\}$ represents matrix rows 2, 5 and 9 requiring the vector element $x_9$
754 to compute in parallel the atomic operations: $b_2\leftarrow b_2+a_{29}x_9$, $b_5\leftarrow b_5+a_{59}x_9$
755 and $b_9\leftarrow b_9+a_{99}x_9$. However, $x_9$ is a vector element of the computing node 3 and it must
756 be sent to the neighboring nodes 1 and 2.
757
758 The hypergraph partitioning allows to reduce the total communication volume while maintaining the computational
759 load balance between the computing nodes. Indeed, it minimizes at best the following sum:
760 \begin{equation}
761 \mathcal{X}(\mathcal{P}) = \displaystyle\sum_{e_j\in\mathcal{E}_C} c_j(\lambda_j-1),
762 \end{equation}
763 where $\mathcal{E}_C$ is the set of the cut hyperedges issued from the partitioning $\mathcal{P}$, $c_j$
764 and $\lambda_j$ are, respectively, the cost and the connectivity of the cut hyperedge $e_j$. In addition,
765 the hypergraph partitioning is constrained to maintain the load balance between the $K$ parts:
766 \begin{equation}
767 W_k\leq (1+\epsilon)\Wavg\mbox{,~}(1\leq k\leq K)\mbox{~and~}(0<\epsilon<1),
768 \end{equation}
769 where $W_k$ is the sum of the vertex weights in the subset $\mathcal{V}_k$, $\Wavg$ is the average part's
770 weight and $\epsilon$ is the maximum allowed imbalanced ratio.
771
772 The hypergraph partitioning is a NP-complete problem but software tools using heuristics are developed, for
773 example: hMETIS~\cite{Kar98}, PaToH~\cite{Cata99} and Zoltan~\cite{Dev06}. Due to the large sizes of the
774 linear systems to be solved, we use a parallel hypergraph partitioning which must be performed by at least 
775 two MPI processes. The hypergraph model $\mathcal{H}$ of the sparse matrix is split into $p$ (number of computing
776 nodes) sub-hypergraphs $\mathcal{H}_k=(\mathcal{V}_k,\mathcal{E}_k)$, $0\leq k<p$, then the parallel partitioning
777 is applied by using the MPI communication routines.
778
779 Table~\ref{tab:08} shows the performances of the parallel GMRES algorithm for solving the linear systems
780 associated to the sparse matrices presented in Table~\ref{tab:06}. In the experiments, we have used the
781 compressed storage format of the sparse vectors and the parallel hypergraph partitioning developed in the
782 Zoltan tool~\cite{ref20,ref21}. The parameters of the hypergraph partitioning are initialized as follows:
783 \begin{itemize}
784 \item The weight $w_i$ of each vertex $v_i$ is set to the number of the nonzero values on the matrix row $i$,
785 \item For simplicity's sake, the cost $c_j$ of each hyperedge $e_j$ is set to 1,
786 \item The maximum imbalanced ratio $\epsilon$ is limited to 10\%.  
787 \end{itemize} 
788 We can notice from Table~\ref{tab:08} that the execution times on the cluster of 12 GPUs are significantly
789 improved compared to those presented in Table~\ref{tab:07}. The hypergraph partitioning applied on the large
790 sparse matrices having large bandwidths have improved the execution times on the GPU cluster by about 65\%.
791
792 \begin{table}[!h]
793 \begin{center}
794 \begin{tabular}{|c|c|c|c|c|c|c|} 
795 \hline
796 Matrix            & $\Time{cpu}$ & $\Time{gpu}$ & $\tau$  & \# $\Iter$ & $\Prec$     & $\Delta$   \\ \hline \hline
797 2cubes\_sphere    & 16.430 s    & 2.840 s      & 5.78 & 58     & 6.23e-16 & 3.25e-19 \\
798 ecology2          & 3.152 s     & 0.367 s      & 8.59 & 21     & 4.78e-15 & 1.06e-15 \\
799 finan512          & 3.672 s     & 0.723 s      & 5.08 & 17     & 3.21e-14 & 8.43e-17 \\
800 G3\_circuit       & 4.468 s     & 0.971 s      & 4.60 & 22     & 1.08e-14 & 1.77e-16 \\ 
801 shallow\_water2   & 2.647 s     & 0.312 s      & 8.48 & 17     & 5.54e-23 & 3.82e-26 \\ 
802 thermal2          & 4.190 s     & 0.666 s      & 6.29 & 21     & 8.25e-14 & 4.34e-18 \\ \hline \hline
803 cage13            & 8.077 s     & 1.584 s      & 5.10 & 26     & 3.38e-13 & 2.08e-16 \\
804 crashbasis        & 35.173 s    & 5.546 s      & 6.34 & 127    & 1.17e-12 & 1.56e-17 \\
805 FEM\_3D\_thermal2 & 24.825 s    & 3.113 s      & 7.97 & 64     & 3.87e-11 & 2.84e-14 \\
806 language          & 16.706 s    & 2.522 s      & 6.62 & 89     & 2.17e-12 & 1.70e-12 \\
807 poli\_large       & 12.715 s    & 3.989 s      & 3.19 & 69     & 5.14e-13 & 1.63e-13 \\
808 torso3            & 48.459 s    & 6.234 s      & 7.77 & 175    & 2.69e-12 & 2.77e-16 \\ \hline
809 \end{tabular}
810 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
811 vectors and a hypergraph partitioning method for solving large sparse linear systems associated to matrices
812 having five bands on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.}
813 \label{tab:08}
814 \end{center}
815 \end{table}
816
817 Table~\ref{tab:09} shows in the second, third and fourth columns the total communication volume on a cluster of 12 GPUs by using row-by-row partitioning or hypergraph partitioning and compressed format. The total communication volume defines the total number of the vector elements exchanged between the 12 GPUs. From these columns we can see that the two heuristics, compressed format for the vectors and the hypergraph partitioning, minimize the number of vector elements to be exchanged over the GPU cluster. The compressed format allows the GPUs to exchange the needed vector elements without any communication overheads. The hypergraph partitioning allows to split the large sparse matrices so as to minimize  data dependencies between the GPU computing nodes. However, we can notice in the fifth column that the hypergraph partitioning takes longer than the computation times. As we have mentioned before, the hypergraph partitioning method is less efficient in terms of memory consumption and partitioning time than its graph counterpart. So for the applications which often use the same sparse matrices, we can perform the hypergraph partitioning only once and, then, we save the traces in files to be reused several times. Therefore, this allows us to avoid the partitioning of the sparse matrices at each resolution of the linear systems.
818
819 \begin{table}
820 \begin{center}
821 \begin{tabular}{|c|c|c|c|c|} 
822 \hline
823 \multirow{3}{*}{Matrix} & Total comm. vol. & Total comm. vol. & Total comm. vol.              & Time of hypergraph \\
824                         & using row-by row & using compressed & using hypergraph partitioning & partitioning \\
825                         & partitioning     & format           & and compressed format         & in minutes \\ \hline \hline
826 2cubes\_sphere          & 182 061 791      & 25 360 543       & 240 679                       & 68.98         \\
827 ecology2                & 181 267 000      & 26 044 002       & 73 021                        & 4.92          \\
828 finan512                & 182 090 692      & 26 087 431       & 900 729                       & 33.72         \\
829 G3\_circuit             & 192 244 835      & 31 912 003       & 5 366 774                     & 11.63         \\
830 shallow\_water2         & 181 729 606      & 25 105 108       & 60 899                        & 5.06          \\ 
831 thermal2                & 191 350 306      & 30 012 846       & 1 077 921                     & 17.88         \\ \hline \hline
832 cage13                  & 183 970 606      & 28 254 282       & 3 845 440                     & 196.45        \\
833 crashbasis              & 182 931 818      & 29 020 060       & 2 401 876                     & 33.39         \\
834 FEM\_3D\_thermal2       & 182 503 894      & 25 263 767       & 250 105                       & 49.89         \\
835 language                & 183 055 017      & 27 291 486       & 1 537 835                     & 9.07          \\
836 poli\_large             & 181 381 470      & 25 053 554       & 7 388 883                     & 5.92          \\
837 torso3                  & 183 863 292      & 25 682 514       & 613 250                       & 61.51        \\ \hline       
838 \end{tabular}
839 \caption{Total communication volume on a cluster of 12 GPUs using row-by-row or hypergraph partitioning methods and compressed vectors. The total communication volume is defined as the total number of vector elements exchanged between all GPUs of the cluster.}
840 \label{tab:09}
841 \end{center}
842 \end{table}
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858 Hereafter, we show the influence of the communications on a GPU cluster compared to a CPU cluster. In Tables~\ref{tab:10},~\ref{tab:11} and~\ref{tab:12}, we compute the ratios between the computation time over the communication time of three versions of the parallel GMRES algorithm to solve sparse linear systems associated to matrices of Table~\ref{tab:06}. These tables show that the hypergraph partitioning and the compressed format of the vectors increase the ratios either on the GPU cluster or on the CPU cluster. That means that the two optimization techniques allow the minimization of the total communication volume between the computing nodes. However, we can notice that the ratios obtained on the GPU cluster are lower than those obtained on the CPU cluster. Indeed, GPUs compute faster than CPUs but with GPUs there are more communications due to CPU/GPU communications, so communications are more time-consuming while the computation time remains unchanged.
859
860 \begin{table}
861 \begin{center}
862 \begin{tabular}{|c||c|c|c||c|c|c|} 
863 \hline
864 \multirow{2}{*}{Matrix} & \multicolumn{3}{c||}{GPU version} & \multicolumn{3}{c|}{CPU version}  \\ \cline{2-7}
865                   & $\Time{comput}$ & $\Time{comm}$ & $\Ratio$ & $\Time{comput}$ & $\Time{comm}$ & $\Ratio$ \\ \hline \hline
866 2cubes\_sphere    & 37.067 s       & 1434.512 s   & {\bf 0.026}   & 312.061 s      & 3453.931 s   & {\bf 0.090}\\
867 ecology2          & 4.116 s        & 501.327 s    & {\bf 0.008}   & 60.776 s       & 1216.607 s   & {\bf 0.050}\\
868 finan512          & 7.170 s        & 386.742 s    & {\bf 0.019}   & 72.464 s       & 932.538 s    & {\bf 0.078}\\
869 G3\_circuit       & 4.797 s        & 537.343 s    & {\bf 0.009}   & 66.011 s       & 1407.378 s   & {\bf 0.047}\\
870 shallow\_water2   & 3.620 s        & 411.208 s    & {\bf 0.009}   & 51.294 s       & 973.446 s    & {\bf 0.053}\\ 
871 thermal2          & 6.902 s        & 511.618 s    & {\bf 0.013}   & 77.255 s       & 1281.979 s   & {\bf 0.060}\\ \hline \hline
872 cage13            & 12.837 s       & 625.175 s    & {\bf 0.021}   & 139.178 s      & 1518.349 s   & {\bf 0.092}\\
873 crashbasis        & 48.532 s       & 3195.183 s   & {\bf 0.015}   & 623.686 s      & 7741.777 s   & {\bf 0.081}\\
874 FEM\_3D\_thermal2 & 37.211 s       & 1584.650 s   & {\bf 0.023}   & 370.297 s      & 3810.255 s   & {\bf 0.097}\\
875 language          & 22.912 s       & 2242.897 s   & {\bf 0.010}   & 286.682 s      & 5348.733 s   & {\bf 0.054}\\
876 poli\_large       & 13.618 s       & 1722.304 s   & {\bf 0.008}   & 190.302 s      & 4059.642 s   & {\bf 0.047}\\
877 torso3            & 74.194 s       & 4454.936 s   & {\bf 0.017}   & 190.302 s      & 10800.787 s  & {\bf 0.083}\\ \hline       
878 \end{tabular}
879 \caption{Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm using row-by-row partitioning on 12 GPUs and 24 CPUs.}
880 \label{tab:10}
881 \end{center}
882 \end{table}
883
884
885 \begin{table}
886 \begin{center}
887 \begin{tabular}{|c||c|c|c||c|c|c|} 
888 \hline
889 \multirow{2}{*}{Matrix} & \multicolumn{3}{c||}{GPU version} & \multicolumn{3}{c|}{CPU version}  \\ \cline{2-7}
890                   & $\Time{comput}$ & $\Time{comm}$ & $\Ratio$ & $\Time{comput}$ & $\Time{comm}$ & $\Ratio$ \\ \hline \hline
891 2cubes\_sphere    & 27.386 s       & 154.861 s   & {\bf 0.177}   & 342.255 s      & 42.100 s   & {\bf 8.130}\\
892 ecology2          & 3.822 s        & 53.131 s    & {\bf 0.072}   & 69.956 s       & 15.019 s   & {\bf 4.658}\\
893 finan512          & 6.366 s        & 41.155 s    & {\bf 0.155}   & 79.592 s       & 8.604 s    & {\bf 9.251}\\
894 G3\_circuit       & 4.543 s        & 63.132 s    & {\bf 0.072}   & 76.540 s       & 27.371 s   & {\bf 2.796}\\
895 shallow\_water2   & 3.282 s        & 43.080 s    & {\bf 0.076}   & 58.348 s       & 8.088 s    & {\bf 7.214}\\ 
896 thermal2          & 5.986 s        & 57.100 s    & {\bf 0.105}   & 87.682 s       & 28.544 s   & {\bf 3.072}\\ \hline \hline
897 cage13            & 10.227 s       & 70.388 s    & {\bf 0.145}   & 152.718 s      & 30.785 s   & {\bf 4.961}\\
898 crashbasis        & 41.527 s       & 369.071 s   & {\bf 0.113}   & 701.040 s      & 158.916 s  & {\bf 4.411}\\
899 FEM\_3D\_thermal2 & 28.691 s       & 167.140 s   & {\bf 0.172}   & 403.510 s      & 50.935 s   & {\bf 7.922}\\
900 language          & 22.408 s       & 242.589 s   & {\bf 0.092}   & 333.119 s      & 64.409 s   & {\bf 5.172}\\
901 poli\_large       & 13.710 s       & 179.208 s   & {\bf 0.077}   & 215.934 s      & 30.903 s   & {\bf 6.987}\\
902 torso3            & 58.455 s       & 480.315 s   & {\bf 0.122}   & 993.609 s      & 152.173 s  & {\bf 6.529}\\ \hline       
903 \end{tabular}
904 \caption{Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm using row-by-row partitioning and compressed format for vectors on 12 GPUs and 24 CPUs.}
905 \label{tab:11}
906 \end{center}
907 \end{table}
908
909
910 \begin{table}
911 \begin{center}
912 \begin{tabular}{|c||c|c|c||c|c|c|} 
913 \hline
914 \multirow{2}{*}{Matrix} & \multicolumn{3}{c||}{GPU version} & \multicolumn{3}{c|}{CPU version}  \\ \cline{2-7}
915                   & $\Time{comput}$ & $\Time{comm}$ & $\Ratio$ & $\Time{comput}$ & $\Time{comm}$ & $\Ratio$ \\ \hline \hline
916 2cubes\_sphere    & 28.440 s       & 7.768 s      & {\bf 3.661}   & 327.109 s      & 63.788 s   & {\bf 5.128}\\
917 ecology2          & 3.652 s        & 0.757 s      & {\bf 4.823}   & 63.632 s       & 13.520 s   & {\bf 4.707}\\
918 finan512          & 7.579 s        & 4.569 s      & {\bf 1.659}   & 74.120 s       & 22.505 s   & {\bf 3.294}\\
919 G3\_circuit       & 4.876 s        & 8.745 s      & {\bf 0.558}   & 72.280 s       & 28.395 s   & {\bf 2.546}\\
920 shallow\_water2   & 3.146 s        & 0.606 s      & {\bf 5.191}   & 52.903 s       & 11.177 s   & {\bf 4.733}\\ 
921 thermal2          & 6.473 s        & 4.325 s      & {\bf 1.497}   & 81.171 s       & 20.907 s   & {\bf 3.882}\\ \hline \hline
922 cage13            & 11.676 s       & 7.723 s      & {\bf 1.512}   & 145.755 s      & 46.547 s   & {\bf 3.131}\\
923 crashbasis        & 42.799 s       & 29.399 s     & {\bf 1.456}   & 650.386 s      & 203.918 s  & {\bf 3.189}\\
924 FEM\_3D\_thermal2 & 29.875 s       & 8.915 s      & {\bf 3.351}   & 382.887 s      & 93.252 s   & {\bf 4.106}\\
925 language          & 20.991 s       & 11.197 s     & {\bf 1.875}   & 310.679 s      & 82.480 s   & {\bf 3.767}\\
926 poli\_large       & 13.817 s       & 102.760 s    & {\bf 0.134}   & 197.508 s      & 151.672 s  & {\bf 1.302}\\
927 torso3            & 57.469 s       & 16.828 s     & {\bf 3.415}   & 926.588 s      & 242.721 s  & {\bf 3.817}\\ \hline       
928 \end{tabular}
929 \caption{Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm using hypergraph partitioning and compressed format for vectors on 12 GPUs and 24 CPUs.}
930 \label{tab:12}
931 \end{center}
932 \end{table}
933
934 \begin{figure}
935 \centering
936   \includegraphics[width=120mm,keepaspectratio]{Figures/weak}
937 \caption{Weak scaling of the parallel GMRES algorithm on a GPU cluster.}
938 \label{fig:09}
939 \end{figure}
940
941  Figure~\ref{fig:09} presents the weak scaling of four versions of the parallel GMRES algorithm on a GPU cluster. We fixed the size of a sub-matrix to 5 million of rows per GPU computing node. We used matrices having five bands generated from the symmetric matrix thermal2. This figure shows that the parallel GMRES algorithm, in its naive version or using either the compression format for vectors or the hypergraph partitioning, is not scalable on a GPU cluster due to the large amount of communications between GPUs. In contrast, we can see that the algorithm using both optimization techniques is fairly scalable. That means that in this version the cost of communications is relatively constant regardless the number of computing nodes in the cluster.\\
942
943  Finally, as far as we are concerned, the parallel solving of a linear system can be easy to optimize when the associated matrix is regular. This is unfortunately not the case for many real-world applications. When the matrix has an irregular structure, the amount of communications between processors is not the same. Another important parameter is the size of the matrix bandwidth which has a huge influence on the amount of communications. In this work, we have generated different kinds of matrices in order to analyze several difficulties. With a bandwidth as large as possible, involving communications between all processors, which is the most difficult situation, we proposed to use two heuristics. Unfortunately, there is no fast method that optimizes the communications in any situation. For systems of non linear equations, there are different algorithms but most of them consist in linearizing the system of equations. In this case, a linear system needs to be solved. The big interest is that the matrix is the same at each step of the non linear system solving, so the partitioning method which is a time consuming step is performed only once.
944
945
946  
947 Another very important issue, which might be ignored by too many people, is that the communications have a greater influence on a cluster of GPUs than on a cluster of CPUs. There are two reasons for that. The first one comes from the fact that with a cluster of GPUs, the CPU/GPU data transfers slow down communications between two GPUs that are not on the same machines. The second one is due to the fact that with GPUs the ratio of the computation time over the communication time decreases since the computation time is reduced. So the impact of the communications between GPUs might be a very important issue that can limit the scalability of a parallel algorithms.
948
949 %%--------------------%%
950 %%      SECTION 7     %%
951 %%--------------------%%
952 \section{Conclusion and perspectives}
953 \label{sec:07}
954 In this paper, we have aimed at harnessing the computing power of a GPU cluster for 
955 solving large sparse linear systems. We have implemented the parallel algorithm of the 
956 GMRES iterative method. We have used a heterogeneous parallel programming based on the
957 CUDA language to program the GPUs and the MPI parallel environment to distribute the
958 computations between the GPU nodes on the cluster.
959
960 The experiments have shown that solving large sparse linear systems is more efficient 
961 on a cluster of GPUs than on a cluster of CPUs. However, the efficiency of a GPU cluster
962 is ensured as long as the spatial and temporal localization of the data is well managed. 
963 The data dependency scheme on a GPU cluster is related to the sparse structures of the
964 matrices (positions of the nonzero values) and the number of the computing nodes. We have
965 shown that a large number of communications between the GPU computing nodes affects 
966 considerably the performances of the parallel GMRES algorithm on the GPU cluster. Therefore,
967 we have proposed to reorder the columns of the sparse local sub-matrices on each GPU node
968 and to use a compressed storage format for the sparse vector involved in the parallel
969 sparse matrix-vector multiplication. This solution allows to minimize the communication
970 overheads. In addition, we have shown that it is interesting to choose a partitioning method
971 according to the structure of the sparse matrix. This reduces the total communication
972 volume between the GPU computing nodes.
973
974 In future works, it would be interesting to implement and study the scalability of the
975 parallel GMRES algorithm on large GPU clusters (hundreds or thousands of GPUs) or on geographically
976 distant GPU clusters. In this context, other methods might be used to reduce communication
977 and to improve the performances of the parallel GMRES algorithm as the multisplitting methods.
978 The recent GPU hardware and software architectures provide the GPU-Direct system which allows
979 two GPUs, placed in the same machine or in two remote machines, to exchange data without using
980 CPUs. This improves the data transfers between GPUs. Finally, it would be interesting to implement
981 other iterative methods on GPU clusters for solving large sparse linear or non linear systems.
982
983 \paragraph{Acknowledgments}
984 This paper is based upon work supported by the R\'egion de Franche-Comt\'e.
985
986 \bibliography{bib}
987 \bibliographystyle{abbrv}
988 \end{document}