]> AND Private Git Repository - GMRES_For_Journal.git/blob - GMRES_Journal.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
01-02-2014
[GMRES_For_Journal.git] / GMRES_Journal.tex
1 \documentclass[11pt]{article}
2 %\documentclass{acmconf}
3 \usepackage{multicol}
4
5 \usepackage[paper=a4paper,dvips,top=1.5cm,left=1.5cm,right=1.5cm,foot=1cm,bottom=1.5cm]{geometry}
6 \usepackage{times}
7 \usepackage{graphicx}
8 \usepackage{amsmath}
9 \usepackage{amsfonts}
10 \usepackage{amssymb}
11 \usepackage{amsthm}
12 \usepackage{amsopn}
13 \usepackage{xspace}
14 \usepackage{array}
15 \usepackage{epsfig}
16 \usepackage{algorithmic}
17 \usepackage[ruled,english,boxed,linesnumbered]{algorithm2e}
18 \usepackage[english]{algorithm2e}
19 \usepackage{url}
20 \usepackage{mdwlist}
21 \usepackage{multirow}
22 \usepackage{color}
23
24 \date{}
25
26 \title{Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters}
27
28 \author{
29 \textsc{Jacques M. Bahi}
30 \qquad
31 \textsc{Rapha\"el Couturier}\thanks{Contact author}
32 \qquad
33 \textsc{Lilia Ziane Khodja}
34 \mbox{}\\ %
35 \\
36 FEMTO-ST Institute, University of Franche-Comte\\
37 IUT Belfort-Montb\'eliard\\
38 Rue Engel Gros, BP 527, 90016 Belfort, \underline{France}\\
39 \mbox{}\\ %
40 \normalsize
41 \{\texttt{jacques.bahi},~\texttt{raphael.couturier},~\texttt{lilia.ziane\_khoja}\}\texttt{@univ-fcomte.fr}
42 }
43
44 \begin{document}
45
46 \maketitle
47
48 \begin{abstract}
49 In this paper, we aim at exploiting the power computing of a GPU cluster for solving large sparse
50 linear systems. We implement the parallel algorithm of the GMRES iterative method using the CUDA
51 programming language and the MPI parallel environment. The experiments shows that a GPU cluster
52 is more efficient than a CPU cluster. In order to optimize the performances, we use a compressed
53 storage format for the sparse vectors and the hypergraph partitioning. These solutions improve
54 the spatial and temporal localization of the shared data between the computing nodes of the GPU
55 cluster.  
56 \end{abstract}
57
58
59
60 %%--------------------%%
61 %%      SECTION 1     %%
62 %%--------------------%%
63 \section{Introduction}
64 \label{sec:01}
65 Large sparse linear systems arise in  most numerical scientific or industrial simulations.
66 They model numerous complex problems in different areas of applications such as mathematics,
67 engineering, biology or physics~\cite{ref18}. However, solving these systems of equations is
68 often an expensive operation in terms of execution time and memory space consumption. Indeed,
69 the linear systems arising in most applications are very large  and have many zero
70 coefficients, and this sparse nature leads to irregular accesses to load the nonzero coefficients
71 from the memory.  
72
73 Parallel computing has become a key issue for solving sparse linear systems of large sizes.
74 This is due to the computing power and the storage capacity of the current parallel computers as
75 well as the availability of different parallel programming languages ​​and environments such as the
76 MPI communication standard. Nowadays, graphics processing units (GPUs) are the most commonly used
77 hardware accelerators in high performance computing. They are equipped with a massively parallel
78 architecture allowing them to compute faster than CPUs. However, the parallel computers equipped 
79 with GPUs introduce new programming difficulties to adapt  parallel algorithms to their architectures.
80
81 In this paper, we use the GMRES iterative method for solving large sparse linear systems on a cluster
82 of GPUs. The parallel algorithm of this method is implemented using the CUDA programming language for
83 the GPUs and the MPI parallel environment to distribute the computations between the different GPU nodes
84 of the cluster. Particularly, we focus on improving the performances of the parallel sparse matrix-vector multiplication. 
85 Indeed, this operation is not only very time-consuming but it also requires communications
86 between the GPU nodes. These communications are needed to build the global vector involved in
87 the parallel sparse matrix-vector multiplication. It should be noted that a communication between two
88 GPU nodes involves data transfers between the GPU and CPU memories in the same node and the MPI communications
89 between the CPUs of the GPU nodes. For performance purposes, we propose to use a compressed storage
90 format to reduce the size of the vectors to be exchanged between the GPU nodes and a hypergraph partitioning
91 of the sparse matrix to reduce the total communication volume. 
92
93 The present paper is organized as follows. In Section~\ref{sec:02} some previous works about solving 
94 sparse linear systems on GPUs are presented. In Section~\ref{sec:03} is given a general overview of the GPU architectures,
95 followed by that the GMRES method in Section~\ref{sec:04}. In Section~\ref{sec:05} the main key points
96 of the parallel implementation of the GMRES method on a GPU cluster are described. Finally, in Section~\ref{sec:06}
97 is presented the performance improvements of the parallel GMRES algorithm on a GPU cluster.
98
99
100 %%--------------------%%
101 %%      SECTION 2     %%
102 %%--------------------%%
103 \section{Related work}
104 \label{sec:02}
105 Numerous works have shown the efficiency of GPUs for solving sparse linear systems compared
106 to their CPUs counterpart. Different iterative methods are implemented on one GPU, for example
107 Jacobi and Gauss-Seidel in~\cite{refa}, conjugate and biconjugate gradients in~\cite{refd,refe,reff,refj}
108 and GMRES in~\cite{refb,refc,refg,refm}. In addition, some iterative methods are implemented on 
109 shared memory multi-GPUs machines as~\cite{refh,refi,refk,refl}. A limited set of studies are
110 devoted to the parallel implementation of the iterative methods on distributed memory GPU clusters
111 as~\cite{refn,refo,refp}.
112
113 Traditionally, the parallel iterative algorithms do not often scale well on GPU clusters due to
114 the significant cost of the communications between the computing nodes. Some authors have already
115 studied how to reduce these communications. In~\cite{cev10}, the authors used a hypergraph partitioning
116 as a preprocessing to the parallel conjugate gradient algorithm in order to reduce the inter-GPU
117 communications over a GPU cluster. The sequential hypergraph partitioning method provided by the
118 PaToH tool~\cite{Cata99} is used because of the small sizes of the sparse symmetric linear systems
119 to be solved. In~\cite{refq}, a compression and decompression technique is proposed to reduce the
120 communication overheads. This technique is performed on the shared vectors to be exchanged between
121 the computing nodes. In~\cite{refr}, the authors studied the impact of asynchronism on parallel
122 iterative algorithms on local GPU clusters. Asynchronous communication primitives suppress some
123 synchronization barriers and allow overlap of communication and computation. In~\cite{refs}, a
124 communication reduction method is used for implementing finite element methods (FEM) on GPU clusters.
125 This method firstly uses the Reverse Cuthill-McKee reordering to reduce the total communication
126 volume. In addition, the performances of the parallel FEM algorithm are improved by overlapping
127 the communication with computation. 
128
129 %%% MODIF %%%
130 \textcolor{red}{ \bf Our main contribution in this work is to show the difficulties to implement the GMRES method for solving sparse linear systems on a cluster of GPUs. First, we show the main key points of the parallel GMRES algorithm on a GPU cluster. Then, we discuss the improvements of the algorithm which are mainly performed on the sparse matrix-vector multiplication when the matrix is distributed on several GPUs. In fact, on a cluster of GPUs the influence of the communications is greater than on clusters of CPUs due to the CPU/GPU communications between two GPUs that are not on the same machines. We propose to perform a hypergraph partitioning on the problem to be solved, then we reorder the matrix columns according to the partitioning scheme, and we use a compressed format for storing the vectors in such a way to minimize the communication overheads between two GPUs.}
131 %%% END %%%
132
133 %%--------------------%%
134 %%      SECTION 3     %%
135 %%--------------------%%
136 \section{{GPU} architectures}
137 \label{sec:03}
138 A GPU (Graphics processing unit) is a hardware accelerator for high performance computing.
139 Its hardware architecture is composed of hundreds of cores organized in several blocks called
140 \emph{streaming multiprocessors}. It is also equipped with a memory hierarchy. It has a set
141 of registers and a private read-write \emph{local memory} per core, a fast \emph{shared memory},
142 read-only \emph{constant} and \emph{texture} caches per multiprocessor and a read-write
143 \emph{global memory} shared by all its multiprocessors. The new architectures (Fermi, Kepler,
144 etc) have also L1 and L2 caches to improve the accesses to the global memory.
145
146 NVIDIA has released the CUDA platform (Compute Unified Device Architecture)~\cite{Nvi10}
147 which provides a high level GPGPU-based programming language (General-Purpose computing
148 on GPUs), allowing to program GPUs for general purpose computations. In CUDA programming
149 environment, all data-parallel and compute intensive portions of an application running
150 on the CPU are off-loaded onto the GPU. Indeed, an application developed in CUDA is a
151 program written in C language (or Fortran) with a minimal set of extensions to define
152 the parallel functions to be executed by the GPU, called \emph{kernels}. We define kernels,
153 as separate functions from those of the CPU, by assigning them a function type qualifiers
154 \verb+__global__+ or \verb+__device__+.
155
156 At the GPU level, the same kernel is executed by a large number of parallel CUDA threads
157 grouped together as a grid of thread blocks. Each multiprocessor of the GPU executes one
158 or more thread blocks in SIMD fashion (Single Instruction, Multiple Data) and in turn each
159 core of a GPU multiprocessor runs one or more threads within a block in SIMT fashion (Single
160 Instruction, Multiple threads). In order to maximize the occupation of the GPU cores, the
161 number of CUDA threads to be involved in a kernel execution is computed according to the
162 size of the problem to be solved. In contrast, the block size is restricted by the limited
163 memory resources of a core. On current GPUs, a thread block may contain up-to $1,024$ concurrent
164 threads. At any given clock cycle, the threads execute the same instruction of a kernel,
165 but each of them operates on different data. Moreover, threads within a block can cooperate
166 by sharing data through the fast shared memory and coordinate their execution through
167 synchronization points. In contrast, within a grid of thread blocks, there is no synchronization
168 at all between blocks. 
169
170 GPUs  only work on data filled in their global memory and the final results of their kernel
171 executions must be communicated to their hosts (CPUs). Hence, the data must be transferred
172 \emph{in} and \emph{out} of the GPU. However, the speed of memory copy between the CPU and
173 the GPU is slower than the memory copy speed of GPUs. Accordingly, it is necessary to limit
174 the transfer of data between the GPU and its host.
175
176
177 %%--------------------%%
178 %%      SECTION 4     %%
179 %%--------------------%%
180 \section{{GMRES} method}
181 \label{sec:04}
182 %%% MODIF %%%
183 The generalized minimal residual method (GMRES) is an iterative method designed by Saad and Schultz in 1986~\cite{Saa86}. It is a generalization of the minimal residual method (MNRES)~\cite{Pai75} to deal with asymmetric and non Hermitian problems and indefinite symmetric problems. 
184
185 Let us consider the following sparse linear system of $n$ equations:
186 \begin{equation}
187   Ax = b,
188 \label{eq:01}
189 \end{equation}
190 where $A\in\mathbb{R}^{n\times n}$ is a sparse square and nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side vector. The main idea of the GMRES method is to find a sequence of solutions $\{x_k\}_{k\in\mathbb{N}}$ which minimizes at best the residual $r_k=b-Ax_k$. The solution $x_k$ is computed in a Krylov sub-space $\mathcal{K}_k(A,v_1)$:
191 \begin{equation}
192 \begin{array}{ll}
193   \mathcal{K}_{k}(A,v_{1}) \equiv \text{span}\{v_{1}, Av_{1}, A^{2}v_{1},..., A^{k-1}v_{1}\}, & v_{1}=\frac{r_{0}}{\|r_{0}\|_{2}},
194 \end{array} 
195 \end{equation}
196 such that the Petrov-Galerkin condition is satisfied:
197 \begin{equation}
198   r_{k} \perp A\mathcal{K}_{k}(A, v_{1}).
199 \end{equation}
200
201 Algorithm~\ref{alg:01} illustrates the main key points of the GMRES method with restarts. The linear system to be solved in this algorithm is left-preconditioned where $M$ is the preconditioning matrix. The Arnoldi process~\cite{Arn51} is used (from line~$7$ to line~$17$ of algorithm~\ref{alg:01}) to construct an orthonormal basis $V_m$ and a Hessenberg matrix $\bar{H}_m$ of order $(m+1)\times m$ such that $m\ll n$. Then, the least-squares problem is solved (line~$18$) to find the vector $y\in\mathbb{R}^m$ which minimizes the residual. Finally, the solution $x_m$ is computed in the Krylov sub-space spanned by $V_m$ (line~$19$). In practice, the GMRES algorithm stops when the Euclidean norm of the residual is small enough and/or the maximum number of iterations is reached.
202 %%% END %%%
203
204 \begin{algorithm}[!h]
205   %\SetAlgoLined
206   \Entree{$A$ (matrix), $b$ (vector), $M$ (preconditioning matrix),
207 $x_{0}$ (initial guess), $\varepsilon$ (tolerance threshold), $max$ (maximum number of iterations),
208 $m$ (number of iterations of the Arnoldi process)}
209   \Sortie{$x$ (solution vector)}
210   \BlankLine
211   $r_{0} \leftarrow M^{-1}(b - Ax_{0})$\;
212   $\beta \leftarrow \|r_{0}\|_{2}$\;
213   $\alpha \leftarrow \|M^{-1}b\|_{2}$\;
214   $convergence \leftarrow false$\;
215   $k \leftarrow 1$\;
216   \BlankLine
217   \While{$(\neg convergence)$}{
218     $v_{1} \leftarrow r_{0} / \beta$\;
219     \For{$j=1$ {\bf to} $m$}{
220       $w_{j} \leftarrow M^{-1}Av_{j}$\;
221       \For{$i=1$ {\bf to} $j$}{
222         $h_{i,j} \leftarrow (w_{j},v_{i})$\;
223         $w_{j} \leftarrow w_{j} - h_{i,j} \times v_{i}$\;
224       }
225       $h_{j+1,j} \leftarrow \|w_{j}\|_{2}$\;
226       $v_{j+1} \leftarrow w_{j} / h_{j+1,j}$\;
227     }
228     \BlankLine
229     Put $V_{m}=\{v_{j}\}_{1\leq j \leq m}$ and $\bar{H}_{m}=(h_{i,j})$ Hessenberg matrix of order $(m+1)\times m$\;
230     Solve the least-squares problem of size $m$: $\underset{y\in\mathbb{R}^{m}}{min}\|\beta e_{1}-\bar{H}_{m}y\|_{2}$\;
231     \BlankLine
232     $x_{m} \leftarrow x_{0} + V_{m}y$\;
233     $r_{m} \leftarrow M^{-1}(b-Ax_{m})$\;
234     $\beta \leftarrow \|r_{m}\|_{2}$\;
235     \BlankLine
236     \eIf{$(\frac{\beta}{\alpha}<\varepsilon)$ {\bf or} $(k\geq max)$}{
237       $convergence \leftarrow true$\;
238     }{
239       $x_{0} \leftarrow x_{m}$\;
240       $r_{0} \leftarrow r_{m}$\;
241       $k \leftarrow k + 1$\;
242     }
243   }
244 \caption{Left-preconditioned GMRES algorithm with restarts}
245 \label{alg:01}
246 \end{algorithm}
247
248
249
250 %%--------------------%%
251 %%      SECTION 5     %%
252 %%--------------------%%
253 \section{Parallel GMRES method on {GPU} clusters}
254 \label{sec:05}
255
256 \subsection{Parallel implementation on a GPU cluster}
257 \label{sec:05.01}
258 The implementation of the GMRES algorithm on a GPU cluster is performed by using
259 a parallel heterogeneous programming. We use the programming language CUDA for the
260 GPUs and the parallel environment MPI for the distribution of the computations between
261 the GPU computing nodes. In this work, a GPU computing node is composed of a GPU and
262 a CPU core managed by a MPI process.
263
264 Let us consider a cluster composed of $p$ GPU computing nodes. First, the sparse linear
265 system~(\ref{eq:01}) is split into $p$ sub-linear systems, each is attributed to a GPU
266 computing node. We partition row-by-row the sparse matrix $A$ and both vectors $x$ and
267 $b$ in $p$ parts (see Figure~\ref{fig:01}). The data issued from the partitioning operation
268 are off-loaded on the GPU global memories to be proceeded by the GPUs. Then, all the
269 computing nodes of the GPU cluster execute the same GMRES iterative algorithm but on
270 different data. Finally, the GPU computing nodes synchronize their computations by using
271 MPI communication routines to solve the global sparse linear system. In what follows,
272 the computing nodes sharing data are called the neighboring nodes.
273
274 \begin{figure}
275 \centering
276   \includegraphics[width=80mm,keepaspectratio]{Figures/partition}
277 \caption{Data partitioning of the sparse matrix $A$, the solution vector $x$ and the right-hand side $b$ in $4$ partitions}
278 \label{fig:01}
279 \end{figure}
280
281 In order to exploit the computing power of the GPUs, we have to execute maximum computations
282 on GPUs to avoid the data transfers between the GPU and its host (CPU), and to maximize the
283 GPU cores utilization to hide global memory access latency. The implementation of the GMRES
284 algorithm is performed by executing the functions operating on vectors and matrices as kernels
285 on GPUs. These operations are often easy to parallelize and more efficient on parallel architectures
286 when they operate on large vectors. We use the fastest routines of the CUBLAS library
287 (CUDA Basic Linear Algebra Subroutines) to implement the dot product (\verb+cublasDdot()+),
288 the Euclidean norm (\verb+cublasDnrm2()+) and the AXPY operation (\verb+cublasDaxpy()+).
289 In addition, we have coded in CUDA a kernel for the scalar-vector product (lines~$7$ and~$15$
290 of Algorithm~\ref{alg:01}), a kernel for solving the least-squares problem (line~$18$) and a
291 kernel for solution vector updates (line~$19$).
292
293 The solution of the least-squares problem in the GMRES algorithm is based on:
294 \begin{itemize}
295   \item a QR factorization of the Hessenberg matrix $\bar{H}$ by using plane rotations and,
296   \item backward-substitution method to compute the vector $y$ minimizing the residual.
297 \end{itemize}
298 This operation is not easy to parallelize and it is not interesting to implement it on GPUs. 
299 However, the size $m$ of the linear least-squares problem to solve in the GMRES method with
300 restarts is very small. So, this problem is solved in sequential by one GPU thread.
301
302 The most important operation in the GMRES method is the sparse matrix-vector multiplication.
303 It is quite expensive for large size matrices in terms of execution time and memory space. In
304 addition, it performs irregular memory accesses to read the nonzero values of the sparse matrix,
305 implying non coalescent accesses to the GPU global memory which slow down the performances of
306 the GPUs. So we use the HYB kernel developed and optimized by Nvidia~\cite{CUSP} which gives on
307 average the best performance in sparse matrix-vector multiplications on GPUs~\cite{Bel09}. The
308 HYB (Hybrid) storage format is the combination of two sparse storage formats: Ellpack format
309 (ELL) and Coordinate format (COO). It stores a typical number of nonzero values per row in ELL
310 format and remaining entries of exceptional rows in COO format. It combines the efficiency of
311 ELL, due to the regularity of its memory accessing and the flexibility of COO which is insensitive
312 to the matrix structure. 
313
314 In the parallel GMRES algorithm, the GPU computing nodes must exchange between them their shared data in
315 order to construct the global vector necessary to compute the parallel sparse matrix-vector
316 multiplication (SpMV). In fact, each computing node has locally the vector elements corresponding
317 to the rows of its sparse sub-matrix and, in order to compute its part of the SpMV, it also
318 requires the vector elements of its neighboring nodes corresponding to the column indices in
319 which its local sub-matrix has nonzero values. Consequently, each computing node manages a global
320 vector composed of a local vector of size $\frac{n}{p}$ and a shared vector of size $S$:
321 \begin{equation}
322   S = bw - \frac{n}{p},
323 \label{eq:11}
324 \end{equation}
325 where $\frac{n}{p}$ is the size of the local vector and $bw$ is the bandwidth of the local sparse
326 sub-matrix which represents the number of columns between the minimum and the maximum column indices
327 (see Figure~\ref{fig:01}). In order to improve memory accesses, we use the texture memory to
328 cache elements of the global vector.
329
330 On a GPU cluster, the exchanges of the shared vectors elements between the neighboring nodes are
331 performed as follows:
332 \begin{itemize}
333   \item at the level of the sending node: data transfers of the shared data from the GPU global memory
334 to the CPU memory by using the CUBLAS communication routine \verb+cublasGetVector()+,
335   \item data exchanges between the CPUs by the MPI communication routine \verb+MPI_Alltoallv()+ and,
336   \item at the level of the receiving node: data transfers of the received shared data from the CPU
337 memory to the GPU global memory by using CUBLAS communication routine \verb+cublasSetVector()+. 
338 \end{itemize}  
339
340 \subsection{Experimentations}
341 \label{sec:05.02}
342 The experiments are done on a cluster composed of six machines interconnected by an Infiniband network
343 of $20$~GB/s. Each machine is a Xeon E5530 Quad-Core running at $2.4$~GHz. It provides $12$~GB of RAM
344 memory with a memory bandwidth of $25.6$~GB/s and it is equipped with two Tesla C1060 GPUs. Each GPU
345 is composed of $240$ cores running at $1.3$ GHz and has $4$~GB of global memory with a memory bandwidth
346 of $102$~GB/s. The GPU is connected to the CPU via a PCI-Express 16x Gen2.0 with a throughput of $8$~GB/s.
347 Figure~\ref{fig:02} shows the general scheme of the GPU cluster.
348
349 \begin{figure}[!h]
350 \centering
351   \includegraphics[width=80mm,keepaspectratio]{Figures/clusterGPU}
352 \caption{A cluster composed of six machines, each equipped with two Tesla C1060 GPUs}
353 \label{fig:02}
354 \end{figure}
355
356 Linux cluster version 2.6.18 OS is installed on the six machines. The C programming language is used for
357 coding the GMRES algorithm on both the CPU and the GPU versions. CUDA version 4.0~\cite{ref19} is used for programming 
358 the GPUs, using CUBLAS library~\cite{ref37} to deal with the functions operating on vectors. Finally, MPI routines
359 of OpenMPI 1.3.3 are used to carry out the communication between the CPU cores.
360
361 The experiments are done on linear systems associated to sparse matrices chosen from the Davis collection of the
362 university of Florida~\cite{Dav97}. They are matrices arising in real-world applications. Table~\ref{tab:01} shows
363 the main characteristics of these sparse matrices and Figure~\ref{fig:03} shows their sparse structures. For
364 each matrix, we give the number of rows (column~$3$ in Table~\ref{tab:01}), the number of nonzero values (column~$4$)
365 and the bandwidth (column~$5$).
366
367 \begin{table}
368 \begin{center}
369 \begin{tabular}{|c|c|r|r|r|} 
370 \hline
371 Matrix type                 & Name              & \# Rows   & \# Nonzeros  & Bandwidth \\\hline \hline
372 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 101 492   & 1 647 264    & 100 464        \\
373                             & ecology2          & 999 999   & 4 995 991    & 2 001          \\ 
374                             & finan512          & 74 752    & 596 992      & 74 725         \\ 
375                             & G3\_circuit       & 1 585 478 & 7 660 826    & 1 219 059      \\
376                             & shallow\_water2   & 81 920    & 327 680      & 58 710         \\
377                             & thermal2          & 1 228 045 & 8 580 313    & 1 226 629      \\ \hline \hline
378 \multirow{6}{*}{Asymmetric} & cage13            & 445 315   & 7 479 343    & 318 788        \\
379                             & crashbasis        & 160 000   & 1 750 416    & 120 202        \\
380                             & FEM\_3D\_thermal2 & 147 900   & 3 489 300    & 117 827        \\
381                             & language          & 399 130   & 1 216 334    & 398 622        \\
382                             & poli\_large       & 15 575    & 33 074       & 15 575         \\
383                             & torso3            & 259 156   & 4 429 042    & 216 854        \\ \hline
384 \end{tabular}
385 \caption{Main characteristics of the sparse matrices chosen from the Davis collection}
386 \label{tab:01}
387 \end{center}
388 \end{table}
389
390 \begin{figure}
391 \centering
392   \includegraphics[width=120mm,keepaspectratio]{Figures/matrices}
393 \caption{Structures of the sparse matrices chosen from the Davis collection}
394 \label{fig:03}
395 \end{figure}
396
397 All the experiments are performed on double-precision data. The parameters of the parallel
398 GMRES algorithm are as follows: the tolerance threshold $\varepsilon=10^{-12}$, the maximum
399 number of iterations $max=500$, the Arnoldi process is limited to $m=16$ iterations, the elements 
400 of the guess solution $x_0$ is initialized to $0$ and those of the right-hand side vector are
401 initialized to $1$. For simplicity sake, we chose the matrix preconditioning $M$ as the
402 main diagonal of the sparse matrix $A$. Indeed, it allows us to easily compute the required inverse
403 matrix $M^{-1}$ and it provides relatively good preconditioning in most cases. Finally, we set 
404 the size of a thread-block in GPUs to $512$ threads. 
405 %%% MODIF %%%
406 \textcolor{red}{\bf It would be noted that the same optimizations done on the GPU version of the parallel GMRES algorithm are performed on the CPU version.}
407 %%% END %%%
408
409 \begin{table}[!h]
410 \begin{center}
411 \begin{tabular}{|c|c|c|c|c|c|c|} 
412 \hline
413 Matrix            & $Time_{cpu}$  & $Time_{gpu}$  & $\tau$  & \# $iter$ & $prec$ & $\Delta$   \\ \hline \hline
414 2cubes\_sphere    & 0.234 s     & 0.124 s      & 1.88  & 21     & 2.10e-14      & 3.47e-18 \\
415 ecology2          & 0.076 s     & 0.035 s      & 2.15  & 21     & 4.30e-13      & 4.38e-15 \\
416 finan512          & 0.073 s     & 0.052 s      & 1.40  & 17     & 3.21e-12      & 5.00e-16 \\
417 G3\_circuit       & 1.016 s     & 0.649 s      & 1.56  & 22     & 1.04e-12      & 2.00e-15 \\
418 shallow\_water2   & 0.061 s     & 0.044 s      & 1.38  & 17     & 5.42e-22      & 2.71e-25 \\
419 thermal2          & 1.666 s     & 0.880 s      & 1.89  & 21     & 6.58e-12      & 2.77e-16 \\ \hline \hline
420 cage13            & 0.721 s     & 0.338 s      & 2.13  & 26     & 3.37e-11      & 2.66e-15 \\
421 crashbasis        & 1.349 s     & 0.830 s      & 1.62  & 121    & 9.10e-12      & 6.90e-12 \\
422 FEM\_3D\_thermal2 & 0.797 s     & 0.419 s      & 1.90  & 64     & 3.87e-09      & 9.09e-13 \\
423 language          & 2.252 s     & 1.204 s      & 1.87  & 90     & 1.18e-10      & 8.00e-11 \\
424 poli\_large       & 0.097 s     & 0.095 s      & 1.02  & 69     & 4.98e-11      & 1.14e-12 \\
425 torso3            & 4.242 s     & 2.030 s      & 2.09  & 175    & 2.69e-10      & 1.78e-14 \\ \hline
426 \end{tabular}
427 \caption{Performances of the parallel GMRES algorithm on a cluster of 24 CPU cores vs. a cluster of 12 GPUs}
428 \label{tab:02}
429 \end{center}
430 \end{table}
431
432 In Table~\ref{tab:02}, we give the performances of the parallel GMRES algorithm for solving the linear
433 systems associated to the sparse matrices shown in Table~\ref{tab:01}. The second and third columns show
434 the execution times in seconds obtained on a cluster of 24 CPU cores and on a cluster of 12 GPUs, respectively.
435 The fourth column shows the ratio $\tau$ between the CPU time $Time_{cpu}$ and the GPU time $Time_{gpu}$ that
436 is computed as follows:
437 \begin{equation}
438   \tau = \frac{Time_{cpu}}{Time_{gpu}}.
439 \end{equation}
440 From these ratios, we can notice that the use of many GPUs is not interesting to solve small sparse linear
441 systems. Solving these sparse linear systems on a cluster of 12 GPUs is as fast as on a cluster of 24 CPU
442 cores. Indeed, the small sizes of the sparse matrices do not allow to maximize the utilization of the GPU
443 cores of the cluster. The fifth, sixth and seventh columns show, respectively, the number of iterations performed
444 by the parallel GMRES algorithm to converge, the precision of the solution, $prec$, computed on the GPU
445 cluster and the difference, $\Delta$, between the solutions computed on the GPU and the GPU clusters. The
446 last two parameters are used to validate the results obtained on the GPU cluster and they are computed as
447 follows:
448 \begin{equation}
449 \begin{array}{c}
450   prec = \|M^{-1}(b-Ax^{gpu})\|_{\infty}, \\
451   \Delta = \|x^{cpu}-x^{gpu}\|_{\infty},
452 \end{array}
453 \end{equation}
454 where $x^{cpu}$ and $x^{gpu}$ are the solutions computed, respectively, on the CPU cluster and on the GPU cluster.
455 We can see that the precision of the solutions computed on the GPU cluster are sufficient, they are about $10^{-10}$,
456 and the parallel GMRES algorithm computes almost the same solutions in both CPU and GPU clusters, with $\Delta$ varying
457 from $10^{-11}$ to $10^{-25}$.
458
459 Afterwards, we evaluate the performances of the parallel GMRES algorithm for solving large linear systems. We have
460 developed in C programming language a generator of large sparse matrices having a band structure which arises 
461 in  most numerical problems. This generator uses the sparse matrices of the Davis collection as the initial
462 matrices to build the large band matrices. It is executed in parallel by all the MPI processes of the cluster
463 so that each process constructs its own sub-matrix as a rectangular block of the global sparse matrix. Each process
464 $i$ computes the size $n_i$ and the offset $offset_i$ of its sub-matrix in the global sparse matrix according to the
465 size $n$ of the linear system to be solved and the number of the GPU computing nodes $p$ as follows:
466 \begin{equation}
467   n_i = \frac{n}{p},
468 \end{equation} 
469 \begin{equation}
470   offset_i = \left\{
471   \begin{array}{l}
472   0\mbox{~if~}i=0,\\
473   offset_{i-1}+n_{i-1}\mbox{~otherwise.}
474   \end{array}
475   \right.
476 \end{equation} 
477 So each process $i$ performs several copies of the same initial matrix chosen from the Davis collection and it
478 puts all these copies on the main diagonal of the global matrix in order to construct a band matrix. Moreover,
479 it fulfills the empty spaces between two successive copies by small copies, \textit{lower\_copy} and \textit{upper\_copy},
480 of the same initial matrix. Figure~\ref{fig:04} shows a generation of a sparse bended matrix by four computing nodes.
481
482 \begin{figure}
483 \centering
484   \includegraphics[width=100mm,keepaspectratio]{Figures/generation}
485 \caption{Example of the generation of a large sparse and band matrix by four computing nodes.}
486 \label{fig:04}
487 \end{figure}
488
489 Table~\ref{tab:03} shows the main characteristics (the number of nonzero values and the bandwidth) of the
490 large sparse matrices generated from those of the Davis collection. These matrices are associated to the
491 linear systems of 25 million of unknown values (each generated sparse matrix has 25 million rows). In Table~\ref{tab:04}
492 we show the performances of the parallel GMRES algorithm for solving large linear systems associated to the
493 sparse band matrices of Table~\ref{tab:03}. The fourth column gives the ratio between the execution time
494 spent on a cluster of 24 CPU cores and that spent on a cluster of 12 GPUs. We can notice from these ratios
495 that for solving large sparse matrices the GPU cluster is more efficient (about 5 times faster) than the CPU
496 cluster. The computing power of the GPUs allows to accelerate the computation of the functions operating
497 on large vectors of the parallel GMRES algorithm.
498
499 \begin{table}[!h]
500 \begin{center}
501 \begin{tabular}{|c|c|r|r|} 
502 \hline
503 Matrix type                 & Name              & \# nonzeros & Bandwidth \\ \hline \hline
504 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 413 703 602 & 198 836   \\
505                             & ecology2          & 124 948 019 & 2 002     \\ 
506                             & finan512          & 278 175 945 & 123 900   \\
507                             & G3\_circuit       & 125 262 292 & 1 891 887 \\            
508                             & shallow\_water2   & 100 235 292 & 62 806    \\
509                             & thermal2          & 175 300 284 & 2 421 285 \\ \hline \hline
510 \multirow{6}{*}{Asymmetric} & cage13            & 435 770 480 & 352 566   \\
511                             & crashbasis        & 409 291 236 & 200 203   \\
512                             & FEM\_3D\_thermal2 & 595 266 787 & 206 029   \\
513                             & language          & 76 912 824  & 398 626   \\
514                             & poli\_large       & 53 322 580  & 15 576    \\
515                             & torso3            & 433 795 264 & 328 757   \\ \hline
516 \end{tabular}
517 \caption{Main characteristics of the sparse and band matrices generated from the sparse matrices of the Davis collection.}
518 \label{tab:03}
519 \end{center}
520 \end{table}
521
522
523 \begin{table}[!h]
524 \begin{center}
525 \begin{tabular}{|c|c|c|c|c|c|c|} 
526 \hline
527 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$ & \# $iter$& $prec$   & $\Delta$   \\ \hline \hline
528 2cubes\_sphere    & 3.683 s     & 0.870 s      & 4.23   & 21       & 2.11e-14 & 8.67e-18 \\
529 ecology2          & 2.570 s     & 0.424 s      & 6.06   & 21       & 4.88e-13 & 2.08e-14 \\
530 finan512          & 2.727 s     & 0.533 s      & 5.11   & 17       & 3.22e-12 & 8.82e-14 \\
531 G3\_circuit       & 4.656 s     & 1.024 s      & 4.54   & 22       & 1.04e-12 & 5.00e-15 \\
532 shallow\_water2   & 2.268 s     & 0.384 s      & 5.91   & 17       & 5.54e-21 & 7.92e-24 \\
533 thermal2          & 4.650 s     & 1.130 s      & 4.11   & 21       & 8.89e-12 & 3.33e-16 \\ \hline \hline
534 cage13            & 6.068 s     & 1.054 s      & 5.75   & 26       & 3.29e-11 & 1.59e-14 \\
535 crashbasis        & 25.906 s    & 4.569 s      & 5.67   & 135      & 6.81e-11 & 4.61e-15 \\
536 FEM\_3D\_thermal2 & 13.555 s    & 2.654 s      & 5.11   & 64       & 3.88e-09 & 1.82e-12 \\
537 language          & 13.538 s    & 2.621 s      & 5.16   & 89       & 2.11e-10 & 1.60e-10 \\
538 poli\_large       & 8.619 s     & 1.474 s      & 5.85   & 69       & 5.05e-11 & 6.59e-12 \\
539 torso3            & 35.213 s    & 6.763 s      & 5.21   & 175      & 2.69e-10 & 2.66e-14 \\ \hline
540 \end{tabular}
541 \caption{Performances of the parallel GMRES algorithm for solving large sparse linear systems associated
542 to band matrices on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.}
543 \label{tab:04}
544 \end{center}
545 \end{table}
546
547
548 %%--------------------%%
549 %%      SECTION 6     %%
550 %%--------------------%%
551 \section{Minimization of communications}
552 \label{sec:06}
553 The parallel sparse matrix-vector multiplication requires  data exchanges between the GPU computing nodes
554 to construct the global vector. However, a GPU cluster requires communications between the GPU nodes and the
555 data transfers between the GPUs and their hosts CPUs. In fact, a communication between two GPU nodes implies:  
556 a data transfer from the GPU memory to the CPU memory at the sending node, a MPI communication between the CPUs
557 of two GPU nodes, and a data transfer from the CPU memory to the GPU memory at the receiving node. Moreover,
558 the data transfers between a GPU and a CPU are considered as the most expensive communications on a GPU cluster.
559 For example in our GPU cluster, the data throughput between a GPU and a CPU is of 8 GB/s which is about twice
560 lower than the data transfer rate between CPUs (20 GB/s) and 12 times lower than the memory bandwidth of the
561 GPU global memory (102 GB/s). In this section, we propose two solutions to improve the execution time of the
562 parallel GMRES algorithm on GPU clusters.
563
564 \subsection{Compressed storage format of the sparse vectors}
565 \label{sec:06.01}
566 In Section~\ref{sec:05.01}, the SpMV multiplication uses a global vector having a size equivalent to the matrix
567 bandwidth (see Formula~\ref{eq:11}). However, we can notice that a SpMV multiplication does not often need all
568 the vector elements of the global vector composed of the local and shared sub-vectors. For example in Figure~\ref{fig:01},
569  node 1 only needs  a single vector element from  node 0 (element 1), two elements from node 2 (elements 8
570 and 9) and two elements from  node 3 (elements 13 and 14). Therefore to reduce the communication overheads
571 of the unused vector elements, the GPU computing nodes must exchange between them only the vector elements necessary
572 to perform their local sparse matrix-vector multiplications.
573
574 \begin{figure}
575 \centering
576   \includegraphics[width=120mm,keepaspectratio]{Figures/compress}
577 \caption{Example of data exchanges between node 1 and its neighbors 0, 2 and 3.}
578 \label{fig:05}
579 \end{figure}
580
581 We propose to use a compressed storage format of the sparse global vector. In Figure~\ref{fig:05}, we show an
582 example of the data exchanges between node 1 and its neighbors to construct the compressed global vector.
583 First, the neighboring nodes 0, 2 and 3 determine the vector elements needed by node 1 and, then, they send
584 only these elements to it. Node 1 receives these shared elements in a compressed vector. However to compute
585 the sparse matrix-vector multiplication, it must first copy the received elements to the corresponding indices
586 in the global vector. In order to avoid this process at each iteration, we propose to reorder the columns of the
587 local sub-matrices so as to use the shared vectors in their compressed storage format (see Figure~\ref{fig:06}).
588 For performance purposes, the computation of the shared data to send to the neighboring nodes is performed
589 by the GPU as a kernel. In addition, we use the MPI point-to-point communication routines: a blocking send routine
590 \verb+MPI_Send()+ and a nonblocking receive routine \verb+MPI_Irecv()+.
591
592 \begin{figure}
593 \centering
594   \includegraphics[width=100mm,keepaspectratio]{Figures/reorder}
595 \caption{Reordering of the columns of a local sparse matrix.}
596 \label{fig:06}
597 \end{figure}
598
599 Table~\ref{tab:05} shows the performances of the parallel GMRES algorithm using the compressed storage format
600 of the sparse global vector. The results are obtained from solving large linear systems associated to the sparse
601 band matrices presented in Table~\ref{tab:03}. We can see from Table~\ref{tab:05} that the execution times 
602 of the parallel GMRES algorithm on a cluster of 12 GPUs are improved by about 38\% compared to those presented
603 in Table~\ref{tab:04}. In addition, the ratios between the execution times spent on the cluster of 24 CPU cores
604 and those spent on the cluster of 12 GPUs have increased. Indeed, the reordering of the sparse sub-matrices and
605 the use of a compressed storage format for the sparse vectors minimize the communication overheads between the
606 GPU computing nodes.
607
608 \begin{table}[!h]
609 \begin{center}
610 \begin{tabular}{|c|c|c|c|c|c|c|} 
611 \hline
612 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$& \# $iter$& $prec$   & $\Delta$   \\ \hline \hline
613 2cubes\_sphere    & 3.597 s     & 0.514 s      & 6.99  & 21       & 2.11e-14 & 8.67e-18 \\
614 ecology2          & 2.549 s     & 0.288 s      & 8.83  & 21       & 4.88e-13 & 2.08e-14 \\
615 finan512          & 2.660 s     & 0.377 s      & 7.05  & 17       & 3.22e-12 & 8.82e-14 \\
616 G3\_circuit       & 3.139 s     & 0.480 s      & 6.53  & 22       & 1.04e-12 & 5.00e-15 \\
617 shallow\_water2   & 2.195 s     & 0.253 s      & 8.68  & 17       & 5.54e-21 & 7.92e-24 \\
618 thermal2          & 3.206 s     & 0.463 s      & 6.93  & 21       & 8.89e-12 & 3.33e-16 \\ \hline \hline
619 cage13            & 5.560 s     & 0.663 s      & 8.39  & 26       & 3.29e-11 & 1.59e-14 \\
620 crashbasis        & 25.802 s    & 3.511 s      & 7.35  & 135      & 6.81e-11 & 4.61e-15 \\
621 FEM\_3D\_thermal2 & 13.281 s    & 1.572 s      & 8.45  & 64       & 3.88e-09 & 1.82e-12 \\
622 language          & 12.553 s    & 1.760 s      & 7.13  & 89       & 2.11e-10 & 1.60e-10 \\
623 poli\_large       & 8.515 s     & 1.053 s      & 8.09  & 69       & 5.05e-11 & 6.59e-12 \\
624 torso3            & 31.463 s    & 3.681 s      & 8.55  & 175      & 2.69e-10 & 2.66e-14 \\ \hline
625 \end{tabular}
626 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
627 vectors for solving large sparse linear systems associated to band matrices on a cluster of 24 CPU cores vs.
628 a cluster of 12 GPUs.}
629 \label{tab:05}
630 \end{center}
631 \end{table}
632
633
634 \subsection{Hypergraph partitioning}
635 \label{sec:06.02}
636 In this section, we use another structure of the sparse matrices. We are interested in sparse matrices
637 whose nonzero values are distributed along their large bandwidths. We developed in C programming
638 language a generator of sparse matrices having five bands (see Figure~\ref{fig:07}). The principle of
639 this generator is the same as the one presented in Section~\ref{sec:05.02}. However, the copies made from the
640 initial sparse matrix, chosen from the Davis collection, are placed on the main diagonal and on two
641 off-diagonals on the left and right of the main diagonal. Table~\ref{tab:06} shows the main characteristics
642 of sparse matrices of size 25 million of rows and generated from those of the Davis collection. We can
643 see in the fourth column that the bandwidths of these matrices are as large as their sizes.
644
645 \begin{figure}
646 \centering
647   \includegraphics[width=100mm,keepaspectratio]{Figures/generation_1}
648 \caption{Example of the generation of a large sparse matrix having five bands by four computing nodes.}
649 \label{fig:07}
650 \end{figure}
651
652
653 \begin{table}[!h]
654 \begin{center}
655 \begin{tabular}{|c|c|r|r|} 
656 \hline
657 Matrix type                 & Name              & \# nonzeros   & Bandwidth \\ \hline \hline
658 \multirow{6}{*}{Symmetric}  & 2cubes\_sphere    & 829 082 728   & 24 999 999     \\
659                             & ecology2          & 254 892 056   & 25 000 000     \\ 
660                             & finan512          & 556 982 339   & 24 999 973     \\ 
661                             & G3\_circuit       & 257 982 646   & 25 000 000     \\
662                             & shallow\_water2   & 200 798 268   & 25 000 000     \\
663                             & thermal2          & 359 340 179   & 24 999 998     \\ \hline \hline
664 \multirow{6}{*}{Asymmetric} & cage13            & 879 063 379   & 24 999 998     \\
665                             & crashbasis        & 820 373 286   & 24 999 803     \\
666                             & FEM\_3D\_thermal2 & 1 194 012 703 & 24 999 998     \\
667                             & language          & 155 261 826   & 24 999 492     \\
668                             & poli\_large       & 106 680 819   & 25 000 000     \\
669                             & torso3            & 872 029 998   & 25 000 000     \\ \hline
670 \end{tabular}
671 \caption{Main characteristics of the sparse matrices having five band and generated from the sparse matrices of the Davis collection.}
672 \label{tab:06}
673 \end{center}
674 \end{table}
675
676 In Table~\ref{tab:07} we give the performances of the parallel GMRES algorithm on the CPU and GPU
677 clusters for solving large linear systems associated to the sparse matrices shown in Table~\ref{tab:06}.
678 We can notice from the ratios given in the fourth column that solving sparse linear systems associated
679 to matrices having large bandwidth on the GPU cluster is as fast as on the CPU cluster. This is due 
680 to the large total communication volume necessary to synchronize the computations over the cluster.
681 In fact, the naive partitioning row-by-row or column-by-column of this type of sparse matrices links
682 a GPU node to many neighboring nodes and produces a significant number of data dependencies between
683 the different GPU nodes.   
684
685 \begin{table}[!h]
686 \begin{center}
687 \begin{tabular}{|c|c|c|c|c|c|c|} 
688 \hline
689 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$ & \# $iter$& $prec$ & $\Delta$   \\ \hline \hline
690 2cubes\_sphere    & 15.963 s    & 7.250 s      & 2.20  & 58     & 6.23e-16 & 3.25e-19 \\
691 ecology2          & 3.549 s     & 2.176 s      & 1.63  & 21     & 4.78e-15 & 1.06e-15 \\
692 finan512          & 3.862 s     & 1.934 s      & 1.99  & 17     & 3.21e-14 & 8.43e-17 \\
693 G3\_circuit       & 4.636 s     & 2.811 s      & 1.65  & 22     & 1.08e-14 & 1.77e-16 \\
694 shallow\_water2   & 2.738 s     & 1.539 s      & 1.78  & 17     & 5.54e-23 & 3.82e-26 \\
695 thermal2          & 5.017 s     & 2.587 s      & 1.94  & 21     & 8.25e-14 & 4.34e-18 \\ \hline \hline
696 cage13            & 9.315 s     & 3.227 s      & 2.89  & 26     & 3.38e-13 & 2.08e-16 \\
697 crashbasis        & 35.980 s    & 14.770 s     & 2.43  & 127    & 1.17e-12 & 1.56e-17 \\
698 FEM\_3D\_thermal2 & 24.611 s    & 7.749 s      & 3.17  & 64     & 3.87e-11 & 2.84e-14 \\
699 language          & 16.859 s    & 9.697 s      & 1.74  & 89     & 2.17e-12 & 1.70e-12 \\
700 poli\_large       & 10.200 s    & 6.534 s      & 1.56  & 69     & 5.14e-13 & 1.63e-13 \\
701 torso3            & 49.074 s    & 19.397 s     & 2.53  & 175    & 2.69e-12 & 2.77e-16 \\ \hline
702 \end{tabular}
703 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
704 vectors for solving large sparse linear systems associated to matrices having five bands on a cluster
705 of 24 CPU cores vs. a cluster of 12 GPUs.}
706 \label{tab:07}
707 \end{center}
708 \end{table}
709
710 We propose to use a hypergraph partitioning method which is well adapted to numerous structures 
711 of sparse matrices~\cite{Cat99}. Indeed, it can well model the communications between the computing
712 nodes especially for the asymmetric and rectangular matrices. It gives in most cases good reductions
713 of the total communication volume. Nevertheless, it is more expensive in terms of execution time and
714 memory space consumption than the partitioning method based on graphs.  
715
716 The sparse matrix $A$ of the linear system to be solved is modelled as a hypergraph
717 $\mathcal{H}=(\mathcal{V},\mathcal{E})$ as follows:
718 \begin{itemize}
719 \item each matrix row $i$ ($0\leq i<n$) corresponds to a vertex $v_i\in\mathcal{V}$,
720 \item each matrix column $j$ ($0\leq j<n$) corresponds to a hyperedge $e_j\in\mathcal{E}$, such that:
721 $\forall a_{ij}$ is a nonzero value of the matrix $A$, $v_i\in pins[e_j]$,
722 \item $w_i$ is the weight of vertex $v_i$,
723 \item $c_j$ is the cost of hyperedge $e_j$.  
724 \end{itemize}
725 A $K$-way partitioning of a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$ is defined as a set 
726 of $K$ pairwise disjoint non-empty subsets (or parts) of the vertex set $\mathcal{V}$: $\mathcal{P}=\{\mathcal{V}_1,\ldots,\mathcal{V}_k\}$,
727 such that $\mathcal{V}=\displaystyle\cup_{k=1}^K\mathcal{V}_{k}$. Each computing node is in charge of
728 a vertex subset. Figure~\ref{fig:08} shows an example of a hypergraph partitioning of a sparse matrix
729 of size $(9\times 9)$ into three parts. The circles and squares correspond, respectively, to the vertices
730 and hyperedges of the hypergraph. The solid squares define the cut hyperedges connecting at least two
731 different parts. The connectivity $\lambda_j$ denotes the number of different parts spanned by the cut
732 hyperedge $e_j$.
733
734 \begin{figure}
735 \centering
736   \includegraphics[width=130mm,keepaspectratio]{Figures/hypergraph}
737 \caption{A hypergraph partitioning of a sparse matrix between three computing nodes.}
738 \label{fig:08}
739 \end{figure}
740
741 The cut hyperedges model the communications between the different GPU computing nodes in the cluster,
742 necessary to perform the SpMV multiplication. Indeed, each hyperedge $e_j$ defines a set of atomic
743 computations $b_i\leftarrow b_i+a_{ij}x_j$ of the SpMV multiplication which needs the $j^{th}$ element
744 of  vector $x$. Therefore pins of hyperedge $e_j$ ($pins[e_j]$) denote the set of matrix rows requiring
745 the same vector element $x_j$. For example in Figure~\ref{fig:08}, hyperedge $e_9$ whose pins are:
746 $pins[e_9]=\{v_2,v_5,v_9\}$ represents matrix rows 2, 5 and 9 requiring the vector element $x_9$
747 to compute in parallel the atomic operations: $b_2\leftarrow b_2+a_{29}x_9$, $b_5\leftarrow b_5+a_{59}x_9$
748 and $b_9\leftarrow b_9+a_{99}x_9$. However, $x_9$ is a vector element of the computing node 3 and it must
749 be sent to the neighboring nodes 1 and 2.
750
751 The hypergraph partitioning allows to reduce the total communication volume while maintaining the computational
752 load balance between the computing nodes. Indeed, it minimizes at best the following sum:
753 \begin{equation}
754 \mathcal{X}(\mathcal{P}) = \displaystyle\sum_{e_j\in\mathcal{E}_C} c_j(\lambda_j-1),
755 \end{equation}
756 where $\mathcal{E}_C$ is the set of the cut hyperedges issued from the partitioning $\mathcal{P}$, $c_j$
757 and $\lambda_j$ are, respectively, the cost and the connectivity of the cut hyperedge $e_j$. In addition,
758 the hypergraph partitioning is constrained to maintain the load balance between the $K$ parts:
759 \begin{equation}
760 W_k\leq (1+\epsilon)W_{avg}\mbox{,~}(1\leq k\leq K)\mbox{~and~}(0<\epsilon<1),
761 \end{equation}
762 where $W_k$ is the sum of the vertex weights in the subset $\mathcal{V}_k$, $W_{avg}$ is the average part's
763 weight and $\epsilon$ is the maximum allowed imbalanced ratio.
764
765 The hypergraph partitioning is a NP-complete problem but software tools using heuristics are developed, for
766 example: hMETIS~\cite{Kar98}, PaToH~\cite{Cata99} and Zoltan~\cite{Dev06}. Due to the large sizes of the
767 linear systems to be solved, we use a parallel hypergraph partitioning which must be performed by at least 
768 two MPI processes. The hypergraph model $\mathcal{H}$ of the sparse matrix is split into $p$ (number of computing
769 nodes) sub-hypergraphs $\mathcal{H}_k=(\mathcal{V}_k,\mathcal{E}_k)$, $0\leq k<p$, then the parallel partitioning
770 is applied by using the MPI communication routines.
771
772 Table~\ref{tab:08} shows the performances of the parallel GMRES algorithm for solving the linear systems
773 associated to the sparse matrices presented in Table~\ref{tab:06}. In the experiments, we have used the
774 compressed storage format of the sparse vectors and the parallel hypergraph partitioning developed in the
775 Zoltan tool~\cite{ref20,ref21}. The parameters of the hypergraph partitioning are initialized as follows:
776 \begin{itemize}
777 \item The weight $w_i$ of each vertex $v_i$ is set to the number of the nonzero values on the matrix row $i$,
778 \item For simplicity sake, the cost $c_j$ of each hyperedge $e_j$ is set to 1,
779 \item The maximum imbalanced ratio $\epsilon$ is limited to 10\%.  
780 \end{itemize} 
781 We can notice from Table~\ref{tab:08} that the execution times on the cluster of 12 GPUs are significantly
782 improved compared to those presented in Table~\ref{tab:07}. The hypergraph partitioning applied on the large
783 sparse matrices having large bandwidths have improved the execution times on the GPU cluster by about 65\%.
784
785 \begin{table}[!h]
786 \begin{center}
787 \begin{tabular}{|c|c|c|c|c|c|c|} 
788 \hline
789 Matrix            & $Time_{cpu}$ & $Time_{gpu}$ & $\tau$  & \# iter & $prec$     & $\Delta$   \\ \hline \hline
790 2cubes\_sphere    & 16.430 s    & 2.840 s      & 5.78 & 58     & 6.23e-16 & 3.25e-19 \\
791 ecology2          & 3.152 s     & 0.367 s      & 8.59 & 21     & 4.78e-15 & 1.06e-15 \\
792 finan512          & 3.672 s     & 0.723 s      & 5.08 & 17     & 3.21e-14 & 8.43e-17 \\
793 G3\_circuit       & 4.468 s     & 0.971 s      & 4.60 & 22     & 1.08e-14 & 1.77e-16 \\ 
794 shallow\_water2   & 2.647 s     & 0.312 s      & 8.48 & 17     & 5.54e-23 & 3.82e-26 \\ 
795 thermal2          & 4.190 s     & 0.666 s      & 6.29 & 21     & 8.25e-14 & 4.34e-18 \\ \hline \hline
796 cage13            & 8.077 s     & 1.584 s      & 5.10 & 26     & 3.38e-13 & 2.08e-16 \\
797 crashbasis        & 35.173 s    & 5.546 s      & 6.34 & 127    & 1.17e-12 & 1.56e-17 \\
798 FEM\_3D\_thermal2 & 24.825 s    & 3.113 s      & 7.97 & 64     & 3.87e-11 & 2.84e-14 \\
799 language          & 16.706 s    & 2.522 s      & 6.62 & 89     & 2.17e-12 & 1.70e-12 \\
800 poli\_large       & 12.715 s    & 3.989 s      & 3.19 & 69     & 5.14e-13 & 1.63e-13 \\
801 torso3            & 48.459 s    & 6.234 s      & 7.77 & 175    & 2.69e-12 & 2.77e-16 \\ \hline
802 \end{tabular}
803 \caption{Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
804 vectors and a hypergraph partitioning method for solving large sparse linear systems associated to matrices
805 having five bands on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.}
806 \label{tab:08}
807 \end{center}
808 \end{table}
809
810 Table~\ref{tab:09} shows in the second, third and fourth columns the total communication volume on a cluster of 12 GPUs by using row-by-row partitioning or hypergraph partitioning and compressed format. The total communication volume defines the total number of the vector elements exchanged between the 12 GPUs. From these columns we can see that the two heuristics, compressed format for the vectors and the hypergraph partitioning, minimize the number the vector elements to be exchanged over the GPU cluster. The compressed format applied  
811
812
813
814 This table shows that the hypergraph partitioning allows to split the large sparse matrices so as to minimize  data
815 dependencies between the GPU computing nodes. However, we can notice in the fourth column that the hypergraph
816 partitioning takes longer than the computation times. As we have mentioned before, the hypergraph partitioning
817 method is less efficient in terms of memory consumption and partitioning time than its graph counterpart.
818 So for the applications which often use the same sparse matrices, we can perform the hypergraph partitioning
819 only once and, then, we save the traces in files to be reused several times. Therefore, this allows us to
820 avoid the partitioning of the sparse matrices at each resolution of the linear systems. 
821
822 \begin{table}[!h]
823 \begin{center}
824 \begin{tabular}{|c|c|c|c|c|} 
825 \hline
826 \multirow{3}{*}{Matrix} & Total comm. vol. & Total comm. vol. & Total comm. vol.              & Time of hypergraph \\
827                         & using row-by row & using compressed & using hypergraph partitioning & partitioning \\
828                         & partitioning     & format           & and compressed format         & in minutes \\ \hline \hline
829 2cubes\_sphere          & 182 061 791      & 25 360 543       & 240 679                       & 68.98         \\
830 ecology2                & 181 267 000      & 26 044 002       & 73 021                        & 4.92          \\
831 finan512                & 182 090 692      & 26 087 431       & 900 729                       & 33.72         \\
832 G3\_circuit             & 192 244 835      & 31 912 003       & 5 366 774                     & 11.63         \\
833 shallow\_water2         & 181 729 606      & 25 105 108       & 60 899                        & 5.06          \\ 
834 thermal2                & 191 350 306      & 30 012 846       & 1 077 921                     & 17.88         \\ \hline \hline
835 cage13                  & 183 970 606      & 28 254 282       & 3 845 440                     & 196.45        \\
836 crashbasis              & 182 931 818      & 29 020 060       & 2 401 876                     & 33.39         \\
837 FEM\_3D\_thermal2       & 182 503 894      & 25 263 767       & 250 105                       & 49.89         \\
838 language                & 183 055 017      & 27 291 486       & 1 537 835                     & 9.07          \\
839 poli\_large             & 181 381 470      & 25 053 554       & 7 388 883                     & 5.92          \\
840 torso3                  & 183 863 292      & 25 682 514       & 613 250                       & 61.51        \\ \hline       
841 \end{tabular}
842 \caption{Total communication volume on a cluster of 12 GPUs using row-by-row or hypergraph partitioning methods and compressed vectors. The total communication volume is defined as the total number of vector elements exchanged between all GPUs of the cluster.}
843 \label{tab:09}
844 \end{center}
845 \end{table}
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861 %%% MODIF %%%
862 \textcolor{red}{\bf Hereafter, we show the influence of the communications on a GPU cluster compared to a CPU cluster. In Tables~\ref{tab:10},~\ref{tab:11} and~\ref{tab:12}, we compute the ratios between the computation time over the communication time of three versions of the parallel GMRES algorithm for solving sparse linear systems associated to matrices of Table~\ref{tab:06}. These tables show that the hypergraph partitioning and the compressed format of the vectors increase the ratios either on the GPU cluster or on the CPU cluster. This means that the two optimization techniques allow the minimization of the total communication volume between the computing nodes. However, we can notice that the ratios obtained on the GPU cluster are lower than those obtained on the CPU cluster. Indeed, GPUs compute faster than CPUs and communications are more time-consuming while the computation time remains unchanged.}
863
864 \begin{table}
865 \begin{center}
866 \begin{tabular}{|c||c|c|c||c|c|c|} 
867 \hline
868 \multirow{2}{*}{Matrix} & \multicolumn{3}{c||}{GPU version} & \multicolumn{3}{c|}{CPU version}  \\ \cline{2-7}
869                   & $Time_{comput}$ & $Time_{comm}$ & $Ratio$ & $Time_{comput}$ & $Time_{comm}$ & $Ratio$ \\ \hline \hline
870 2cubes\_sphere    & 37.067 s       & 1434.512 s   & {\bf 0.026}   & 312.061 s      & 3453.931 s   & {\bf 0.090}\\
871 ecology2          & 4.116 s        & 501.327 s    & {\bf 0.008}   & 60.776 s       & 1216.607 s   & {\bf 0.050}\\
872 finan512          & 7.170 s        & 386.742 s    & {\bf 0.019}   & 72.464 s       & 932.538 s    & {\bf 0.078}\\
873 G3\_circuit       & 4.797 s        & 537.343 s    & {\bf 0.009}   & 66.011 s       & 1407.378 s   & {\bf 0.047}\\
874 shallow\_water2   & 3.620 s        & 411.208 s    & {\bf 0.009}   & 51.294 s       & 973.446 s    & {\bf 0.053}\\ 
875 thermal2          & 6.902 s        & 511.618 s    & {\bf 0.013}   & 77.255 s       & 1281.979 s   & {\bf 0.060}\\ \hline \hline
876 cage13            & 12.837 s       & 625.175 s    & {\bf 0.021}   & 139.178 s      & 1518.349 s   & {\bf 0.092}\\
877 crashbasis        & 48.532 s       & 3195.183 s   & {\bf 0.015}   & 623.686 s      & 7741.777 s   & {\bf 0.081}\\
878 FEM\_3D\_thermal2 & 37.211 s       & 1584.650 s   & {\bf 0.023}   & 370.297 s      & 3810.255 s   & {\bf 0.097}\\
879 language          & 22.912 s       & 2242.897 s   & {\bf 0.010}   & 286.682 s      & 5348.733 s   & {\bf 0.054}\\
880 poli\_large       & 13.618 s       & 1722.304 s   & {\bf 0.008}   & 190.302 s      & 4059.642 s   & {\bf 0.047}\\
881 torso3            & 74.194 s       & 4454.936 s   & {\bf 0.017}   & 190.302 s      & 10800.787 s  & {\bf 0.083}\\ \hline       
882 \end{tabular}
883 \caption{Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm using row-by-row partitioning on 12 GPUs and 24 CPUs.}
884 \label{tab:10}
885 \end{center}
886 \end{table}
887
888
889 \begin{table}
890 \begin{center}
891 \begin{tabular}{|c||c|c|c||c|c|c|} 
892 \hline
893 \multirow{2}{*}{Matrix} & \multicolumn{3}{c||}{GPU version} & \multicolumn{3}{c|}{CPU version}  \\ \cline{2-7}
894                   & $Time_{comput}$ & $Time_{comm}$ & $Ratio$ & $Time_{comput}$ & $Time_{comm}$ & $Ratio$ \\ \hline \hline
895 2cubes\_sphere    & 27.386 s       & 154.861 s   & {\bf 0.177}   & 342.255 s      & 42.100 s   & {\bf 8.130}\\
896 ecology2          & 3.822 s        & 53.131 s    & {\bf 0.072}   & 69.956 s       & 15.019 s   & {\bf 4.658}\\
897 finan512          & 6.366 s        & 41.155 s    & {\bf 0.155}   & 79.592 s       & 8.604 s    & {\bf 9.251}\\
898 G3\_circuit       & 4.543 s        & 63.132 s    & {\bf 0.072}   & 76.540 s       & 27.371 s   & {\bf 2.796}\\
899 shallow\_water2   & 3.282 s        & 43.080 s    & {\bf 0.076}   & 58.348 s       & 8.088 s    & {\bf 7.214}\\ 
900 thermal2          & 5.986 s        & 57.100 s    & {\bf 0.105}   & 87.682 s       & 28.544 s   & {\bf 3.072}\\ \hline \hline
901 cage13            & 10.227 s       & 70.388 s    & {\bf 0.145}   & 152.718 s      & 30.785 s   & {\bf 4.961}\\
902 crashbasis        & 41.527 s       & 369.071 s   & {\bf 0.113}   & 701.040 s      & 158.916 s  & {\bf 4.411}\\
903 FEM\_3D\_thermal2 & 28.691 s       & 167.140 s   & {\bf 0.172}   & 403.510 s      & 50.935 s   & {\bf 7.922}\\
904 language          & 22.408 s       & 242.589 s   & {\bf 0.092}   & 333.119 s      & 64.409 s   & {\bf 5.172}\\
905 poli\_large       & 13.710 s       & 179.208 s   & {\bf 0.077}   & 215.934 s      & 30.903 s   & {\bf 6.987}\\
906 torso3            & 58.455 s       & 480.315 s   & {\bf 0.122}   & 993.609 s      & 152.173 s  & {\bf 6.529}\\ \hline       
907 \end{tabular}
908 \caption{Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm using row-by-row partitioning and compressed format for vectors on 12 GPUs and 24 CPUs.}
909 \label{tab:11}
910 \end{center}
911 \end{table}
912
913
914 \begin{table}
915 \begin{center}
916 \begin{tabular}{|c||c|c|c||c|c|c|} 
917 \hline
918 \multirow{2}{*}{Matrix} & \multicolumn{3}{c||}{GPU version} & \multicolumn{3}{c|}{CPU version}  \\ \cline{2-7}
919                   & $Time_{comput}$ & $Time_{comm}$ & $Ratio$ & $Time_{comput}$ & $Time_{comm}$ & $Ratio$ \\ \hline \hline
920 2cubes\_sphere    & 28.440 s       & 7.768 s      & {\bf 3.661}   & 327.109 s      & 63.788 s   & {\bf 5.128}\\
921 ecology2          & 3.652 s        & 0.757 s      & {\bf 4.823}   & 63.632 s       & 13.520 s   & {\bf 4.707}\\
922 finan512          & 7.579 s        & 4.569 s      & {\bf 1.659}   & 74.120 s       & 22.505 s   & {\bf 3.294}\\
923 G3\_circuit       & 4.876 s        & 8.745 s      & {\bf 0.558}   & 72.280 s       & 28.395 s   & {\bf 2.546}\\
924 shallow\_water2   & 3.146 s        & 0.606 s      & {\bf 5.191}   & 52.903 s       & 11.177 s   & {\bf 4.733}\\ 
925 thermal2          & 6.473 s        & 4.325 s      & {\bf 1.497}   & 81.171 s       & 20.907 s   & {\bf 3.882}\\ \hline \hline
926 cage13            & 11.676 s       & 7.723 s      & {\bf 1.512}   & 145.755 s      & 46.547 s   & {\bf 3.131}\\
927 crashbasis        & 42.799 s       & 29.399 s     & {\bf 1.456}   & 650.386 s      & 203.918 s  & {\bf 3.189}\\
928 FEM\_3D\_thermal2 & 29.875 s       & 8.915 s      & {\bf 3.351}   & 382.887 s      & 93.252 s   & {\bf 4.106}\\
929 language          & 20.991 s       & 11.197 s     & {\bf 1.875}   & 310.679 s      & 82.480 s   & {\bf 3.767}\\
930 poli\_large       & 13.817 s       & 102.760 s    & {\bf 0.134}   & 197.508 s      & 151.672 s  & {\bf 1.302}\\
931 torso3            & 57.469 s       & 16.828 s     & {\bf 3.415}   & 926.588 s      & 242.721 s  & {\bf 3.817}\\ \hline       
932 \end{tabular}
933 \caption{Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm using hypergraph partitioning and compressed format for vectors on 12 GPUs and 24 CPUs.}
934 \label{tab:12}
935 \end{center}
936 \end{table}
937
938
939 \textcolor{red}{\bf Finally, the parallel solving of a linear system can be easy to optimize when the associated matrix is regular. This is unfortunately not the case of many real-world applications. When the matrix has an irregular structure, the amount of communication between processors is not the same. Another important parameter is the size of the matrix bandwidth which has a huge influence on the amount of communications. In this work, we have generated different kinds of matrices in order to analyze different difficulties. With as a large bandwidth as possible involving communications between all processors, which is the most difficult situation, we proposed to use two heuristics. Unfortunately, there is no fast method that optimizes the communication in any situation. For systems of non linear equations, there are different algorithms but most of them consist in linearizing the system of equations. In this case, a linear system needs to be solved. The big interest is that the matrix is the same at each step of the non linear system solving, so the partitioning method which is a time consuming step is performed once only.
940 }
941
942 \textcolor{red}{\bf 
943 Another very important issue is that the communications have a greater influence on a cluster of GPUs than on a cluster of CPUs. There are two reasons for this. The first one comes from the fact that with a cluster of GPUs, the CPU/GPU data transfers slow down communications between two GPUs that are not on the same machines. The second one is due to the fact that with GPUs the ratio of the computation time over the communication time decreases since the computation time is reduced. So the impact of the communications between GPUs might be a very important issue that can limit the scalability of a parallel algorithm.}
944 %%% END %%%
945
946 %%--------------------%%
947 %%      SECTION 7     %%
948 %%--------------------%%
949 \section{Conclusion and perspectives}
950 \label{sec:07}
951 In this paper, we have aimed at harnessing the computing power of a GPU cluster for 
952 solving large sparse linear systems. We have implemented the parallel algorithm of the 
953 GMRES iterative method. We have used a heterogeneous parallel programming based on the
954 CUDA language to program the GPUs and the MPI parallel environment to distribute the
955 computations between the GPU nodes on the cluster.
956
957 The experiments have shown that solving large sparse linear systems is more efficient 
958 on a cluster of GPUs than on a cluster of CPUs. However, the efficiency of a GPU cluster
959 is ensured as long as the spatial and temporal localization of the data is well managed. 
960 The data dependency scheme on a GPU cluster is related to the sparse structures of the
961 matrices (positions of the nonzero values) and the number of the computing nodes. We have
962 shown that a large number of communications between the GPU computing nodes affects 
963 considerably the performances of the parallel GMRES algorithm on the GPU cluster. Therefore,
964 we have proposed to reorder the columns of the sparse local sub-matrices on each GPU node
965 and to use a compressed storage format for the sparse vector involved in the parallel
966 sparse matrix-vector multiplication. This solution allows to minimize the communication
967 overheads. In addition, we have shown that it is interesting to choose a partitioning method
968 according to the structure of the sparse matrix. This reduces the total communication
969 volume between the GPU computing nodes.
970
971 In future works, it would be interesting to implement and study the scalability of the
972 parallel GMRES algorithm on large GPU clusters (hundreds or thousands of GPUs) or on geographically
973 distant GPU clusters. In this context, other methods might be used to reduce communication
974 and to improve the performances of the parallel GMRES algorithm as the multisplitting methods.
975 The recent GPU hardware and software architectures provide the GPU-Direct system which allows
976 two GPUs, placed in the same machine or in two remote machines, to exchange data without using
977 CPUs. This improves the data transfers between GPUs. Finally, it would be interesting to implement
978 other iterative methods on GPU clusters for solving large sparse linear or nonlinear systems.
979
980 \paragraph{Acknowledgments}
981 This paper is based upon work supported by the R\'egion de Franche-Comt\'e.
982
983 \bibliography{bib}
984 \bibliographystyle{abbrv}
985 \end{document}