4 \subsection{Definition of robustness}\label{section:robustness-definition}
6 \textbf{TODO: Ajouter la definition de robustesse de Kalker}
8 \textbf{TODO: Ajouter la definition de sécurité de Kalker --> AU BON ENDROIT}
10 \subsection{Visual scales for robustness
11 threshold}\label{section:robustness-scale}
13 \textbf{TODO definition}
15 Given the robustness definition, it can be said that the notion of robustness is
16 a subjective notion depending of the context and of the watermarking application
19 To affirm that a watermarking process is robust or not in such or such other
20 conditions, it is necessary to define a robustness threshold. If it is
21 considered an image as watermak, such a threshold can be subjectively defined
22 looking for a visual difference rate scale in term of bytes differences. It has
23 been established 3 scales for 3 types of images:
25 \item Greyscale images,
27 \item And white and black images.
31 \textbf{Firstly, it can be remark that in the field of watermarking with an image
32 as watermark, one watermark can be visually considered as identical to an other,
33 if the second is the same, or correspond to the negative version of the first.}
35 \subsubsection{\textbf{Scale in greyscale domain}}
37 The scale in the greyscale domain is presented in
38 Figure~\ref{fig:visual-scale-greyscale}~\vpageref{fig:visual-scale-greyscale}.
40 Looking the visual scale, it can be deduced that the in the greyscale domain, a
41 watermarking process is robust for a difference rate between 0\% and 30\%, and
42 between 70\% and 100\% for the negative image case.
44 \textbf{So in this field, the robustness threshold can be fixed to 30\%.}
48 \begin{minipage}[b]{.32\linewidth}
50 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/0_lena}}
51 \centerline{(0) Difference rate of 0\%}
54 \begin{minipage}[b]{0.32\linewidth}
56 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/5_lena}}
57 \centerline{(1) Difference rate of 5\%}
60 \begin{minipage}[b]{0.32\linewidth}
62 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/10_lena}}
63 \centerline{(2) Difference rate of 10\%}
65 \begin{minipage}[b]{.32\linewidth}
67 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/15_lena}}
68 \centerline{(3) Difference rate of 15\%}
71 \begin{minipage}[b]{0.32\linewidth}
73 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/20_lena}}
74 \centerline{(4) Difference rate of 20\%}
77 \begin{minipage}[b]{0.32\linewidth}
79 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/25_lena}}
80 \centerline{(5) Difference rate of 25\%}
82 \begin{minipage}[b]{.32\linewidth}
84 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/30_lena}}
85 \centerline{(6) Difference rate of 30\%}
88 \begin{minipage}[b]{0.32\linewidth}
90 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/35_lena}}
91 \centerline{(7) Difference rate of 35\%}
94 \begin{minipage}[b]{0.32\linewidth}
96 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/40_lena}}
97 \centerline{(8) Difference rate of 40\%}
99 \begin{minipage}[b]{.32\linewidth}
101 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/45_lena}}
102 \centerline{(9) Difference rate of 45\%}
105 \begin{minipage}[b]{0.32\linewidth}
107 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/50_lena}}
108 \centerline{(10) Difference rate of 50\%}
111 \begin{minipage}[b]{0.32\linewidth}
113 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/55_lena}}
114 \centerline{(11) Difference rate of 55\%}
116 \begin{minipage}[b]{.32\linewidth}
118 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/60_lena}}
119 \centerline{(12) Difference rate of 60\%}
122 \begin{minipage}[b]{0.32\linewidth}
124 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/65_lena}}
125 \centerline{(13) Difference rate of 65\%}
128 \begin{minipage}[b]{0.32\linewidth}
130 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/70_lena}}
131 \centerline{(14) Difference rate of 70\%}
133 \begin{minipage}[b]{.32\linewidth}
135 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/75_lena}}
136 \centerline{(15) Difference rate of 75\%}
139 \begin{minipage}[b]{0.32\linewidth}
141 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/80_lena}}
142 \centerline{(16) Difference rate of 80\%}
145 \begin{minipage}[b]{0.32\linewidth}
147 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/85_lena}}
148 \centerline{(17) Difference rate of 85\%}
150 \begin{minipage}[b]{.32\linewidth}
152 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/90_lena}}
153 \centerline{(18) Difference rate of 90\%}
156 \begin{minipage}[b]{0.32\linewidth}
158 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/95_lena}}
159 \centerline{(19) Difference rate of 95\%}
162 \begin{minipage}[b]{0.32\linewidth}
164 \centerline{\includegraphics[width=2.9cm]{img/greyscale-scale/100_lena}}
165 \centerline{(20) Difference rate of 100\%}
167 \caption{Visual scale in greyscale domain for robustness threshold evaluation.}
168 \label{fig:visual-scale-greyscale}
173 \subsubsection{\textbf{Scale in colour domain}}
175 The scale in color domain is presented in
176 Figure~\ref{fig:visual-scale-colour}~\vpageref{fig:visual-scale-colour}.
178 Looking the visual scale, it can be deduced that the in the color domain, a
179 watermarking process is robust for a difference rate between 0\% and 40\%, and
180 between 60\% and 100\% for the negative image case.
182 \textbf{So in this field, the robustness threshold can be fixed to 40\%.}
186 \begin{minipage}[b]{.32\linewidth}
188 \centerline{\includegraphics[width=2.9cm]{img/color-scale/0_singe}}
189 \centerline{(0) Difference rate of 0\%}
192 \begin{minipage}[b]{0.32\linewidth}
194 \centerline{\includegraphics[width=2.9cm]{img/color-scale/5_singe}}
195 \centerline{(1) Difference rate of 5\%}
198 \begin{minipage}[b]{0.32\linewidth}
200 \centerline{\includegraphics[width=2.9cm]{img/color-scale/10_singe}}
201 \centerline{(2) Difference rate of 10\%}
203 \begin{minipage}[b]{.32\linewidth}
205 \centerline{\includegraphics[width=2.9cm]{img/color-scale/15_singe}}
206 \centerline{(3) Difference rate of 15\%}
209 \begin{minipage}[b]{0.32\linewidth}
211 \centerline{\includegraphics[width=2.9cm]{img/color-scale/20_singe}}
212 \centerline{(4) Difference rate of 20\%}
215 \begin{minipage}[b]{0.32\linewidth}
217 \centerline{\includegraphics[width=2.9cm]{img/color-scale/25_singe}}
218 \centerline{(5) Difference rate of 25\%}
220 \begin{minipage}[b]{.32\linewidth}
222 \centerline{\includegraphics[width=2.9cm]{img/color-scale/30_singe}}
223 \centerline{(6) Difference rate of 30\%}
226 \begin{minipage}[b]{0.32\linewidth}
228 \centerline{\includegraphics[width=2.9cm]{img/color-scale/35_singe}}
229 \centerline{(7) Difference rate of 35\%}
232 \begin{minipage}[b]{0.32\linewidth}
234 \centerline{\includegraphics[width=2.9cm]{img/color-scale/40_singe}}
235 \centerline{(8) Difference rate of 40\%}
237 \begin{minipage}[b]{.32\linewidth}
239 \centerline{\includegraphics[width=2.9cm]{img/color-scale/45_singe}}
240 \centerline{(9) Difference rate of 45\%}
243 \begin{minipage}[b]{0.32\linewidth}
245 \centerline{\includegraphics[width=2.9cm]{img/color-scale/50_singe}}
246 \centerline{(10) Difference rate of 50\%}
249 \begin{minipage}[b]{0.32\linewidth}
251 \centerline{\includegraphics[width=2.9cm]{img/color-scale/55_singe}}
252 \centerline{(11) Difference rate of 55\%}
254 \begin{minipage}[b]{.32\linewidth}
256 \centerline{\includegraphics[width=2.9cm]{img/color-scale/60_singe}}
257 \centerline{(12) Difference rate of 60\%}
260 \begin{minipage}[b]{0.32\linewidth}
262 \centerline{\includegraphics[width=2.9cm]{img/color-scale/65_singe}}
263 \centerline{(13) Difference rate of 65\%}
266 \begin{minipage}[b]{0.32\linewidth}
268 \centerline{\includegraphics[width=2.9cm]{img/color-scale/70_singe}}
269 \centerline{(14) Difference rate of 70\%}
271 \begin{minipage}[b]{.32\linewidth}
273 \centerline{\includegraphics[width=2.9cm]{img/color-scale/75_singe}}
274 \centerline{(15) Difference rate of 75\%}
277 \begin{minipage}[b]{0.32\linewidth}
279 \centerline{\includegraphics[width=2.9cm]{img/color-scale/80_singe}}
280 \centerline{(16) Difference rate of 80\%}
283 \begin{minipage}[b]{0.32\linewidth}
285 \centerline{\includegraphics[width=2.9cm]{img/color-scale/85_singe}}
286 \centerline{(17) Difference rate of 85\%}
288 \begin{minipage}[b]{.32\linewidth}
290 \centerline{\includegraphics[width=2.9cm]{img/color-scale/90_singe}}
291 \centerline{(18) Difference rate of 90\%}
294 \begin{minipage}[b]{0.32\linewidth}
296 \centerline{\includegraphics[width=2.9cm]{img/color-scale/95_singe}}
297 \centerline{(19) Difference rate of 95\%}
300 \begin{minipage}[b]{0.32\linewidth}
302 \centerline{\includegraphics[width=2.9cm]{img/color-scale/100_singe}}
303 \centerline{(20) Difference rate of 100\%}
305 \caption{Visual scale in colour domain for robustness threshold evaluation.}
306 \label{fig:visual-scale-colour}
310 \subsubsection{\textbf{Scale in white and black domain}}
312 The scale in white and black domain is presented in
313 Figure~\ref{fig:visual-scale-white-black}~\vpageref{fig:visual-scale-white-black}.
315 Looking the visual scale, it can be deduced that the in the white and black domain, a
316 watermarking process is robust for a difference rate between 0\% and 20\%, and
317 between 80\% and 100\% for the negative image case.
319 \textbf{So in this field, the robustness threshold can be fixed to 20\%.}
323 \begin{minipage}[b]{.32\linewidth}
325 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/0_invader}}
326 \centerline{(0) Difference rate of 0\%}
329 \begin{minipage}[b]{0.32\linewidth}
331 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/5_invader}}
332 \centerline{(1) Difference rate of 5\%}
335 \begin{minipage}[b]{0.32\linewidth}
337 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/10_invader}}
338 \centerline{(2) Difference rate of 10\%}
340 \begin{minipage}[b]{.32\linewidth}
342 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/15_invader}}
343 \centerline{(3) Difference rate of 15\%}
346 \begin{minipage}[b]{0.32\linewidth}
348 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/20_invader}}
349 \centerline{(4) Difference rate of 20\%}
352 \begin{minipage}[b]{0.32\linewidth}
354 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/25_invader}}
355 \centerline{(5) Difference rate of 25\%}
357 \begin{minipage}[b]{.32\linewidth}
359 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/30_invader}}
360 \centerline{(6) Difference rate of 30\%}
363 \begin{minipage}[b]{0.32\linewidth}
365 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/35_invader}}
366 \centerline{(7) Difference rate of 35\%}
369 \begin{minipage}[b]{0.32\linewidth}
371 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/40_invader}}
372 \centerline{(8) Difference rate of 40\%}
374 \begin{minipage}[b]{.32\linewidth}
376 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/45_invader}}
377 \centerline{(9) Difference rate of 45\%}
380 \begin{minipage}[b]{0.32\linewidth}
382 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/50_invader}}
383 \centerline{(10) Difference rate of 50\%}
386 \begin{minipage}[b]{0.32\linewidth}
388 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/55_invader}}
389 \centerline{(11) Difference rate of 55\%}
391 \begin{minipage}[b]{.32\linewidth}
393 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/60_invader}}
394 \centerline{(12) Difference rate of 60\%}
397 \begin{minipage}[b]{0.32\linewidth}
399 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/65_invader}}
400 \centerline{(13) Difference rate of 65\%}
403 \begin{minipage}[b]{0.32\linewidth}
405 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/70_invader}}
406 \centerline{(14) Difference rate of 70\%}
408 \begin{minipage}[b]{.32\linewidth}
410 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/75_invader}}
411 \centerline{(15) Difference rate of 75\%}
414 \begin{minipage}[b]{0.32\linewidth}
416 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/80_invader}}
417 \centerline{(16) Difference rate of 80\%}
420 \begin{minipage}[b]{0.32\linewidth}
422 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/85_invader}}
423 \centerline{(17) Difference rate of 85\%}
425 \begin{minipage}[b]{.32\linewidth}
427 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/90_invader}}
428 \centerline{(18) Difference rate of 90\%}
431 \begin{minipage}[b]{0.32\linewidth}
433 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/95_invader}}
434 \centerline{(19) Difference rate of 95\%}
437 \begin{minipage}[b]{0.32\linewidth}
439 \centerline{\includegraphics[width=2.9cm]{img/W_B-scale/100_invader}}
440 \centerline{(20) Difference rate of 100\%}
442 \caption{Visual scale in white and black domain for robustness threshold
444 \label{fig:visual-scale-white-black}
448 \subsubsection{\textbf{Conclusion concerning the robustness threshold}}
450 \textbf{From the results of the previous study, it can be concluded that the
451 robustness threshold depends of the nature of the watermark.}\newline
453 \textbf{So for a picture as watermark, the highest robustness threshold is
454 obtain with color images.}
456 \subsection{Presentation of the
457 architecture}\label{section:architecture-presentation}
459 Computations have been
460 performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comt\'{e}.
462 In order to take benefits of parallelism, we have used Jace~\cite{bhm09:ip}, a
463 grid-enabled programming and execution environment allowing a simple and efficient implementation
464 of parallel and distributed applications. Roughly speaking, Jace builds a virtual parallel machine by
465 connecting a set of heterogeneous and distant computers.
466 It schedules tasks, executes them, and returns results to the user. It
467 also proposes a simple programming interface for the implementation of applications
468 using a message passing model.
470 In our case, tasks are independent Python programs with different parameters. Jace takes care to execute them in parallel ensuring optimal load balancing and fault tolerance.
472 For these experiments we have used HPC resources
473 from Mesocentre of Franche-Comt\'{e}. This platform
474 is currently composed of 720 cores with 11 TeraFLOPS of power.
476 The different tests have been realized on several images from the Wikimedia
477 Commons repository~\cite{wiki:wikimedia-commons}.
480 \textbf{FAIRE AUSSI DES TESTS AVEC LA BASE DE BOSS}
481 The conditions of all tests are described for each one in the caption of the graph result.
483 %je ne sais pas comment expliquer vos configs !
484 %In the following experiments, we have chosen different configuration files,
485 %about 1000 images from wikimedia.....
489 \subsection{Tests realized}\label{sec:tests-realized-ci-1}
491 In this section, it is studied the robustness of the watermarking process
492 $CI_1$. To do this, it has been executed two test batteries in order to evaluate
493 the evolution of the bytes difference rate in function of the geometrical
494 attacks parameters, between the watermark inserted and the watermark extracted
497 In the first battery of tests we have used the same embedding key (a constant
498 strategy,the same strategy has been used to watermark all the
499 images in this test) to embed the watermark. In the second battery of tests,
500 in order to see the influence of the embedding key on the robustness, we have embedded all
501 the watermark with strategies generated randomly(a
502 different strategy has been used to watermark each image).
504 To obtain the following results, we have realized a great number of attacks on
505 600 images, and we have traced for each attack, two graphics (average and
506 standard deviation), in order to determine the acceptability
507 threshold for our watermarking process $CI_1$.
509 \subsection{Tests results}\label{sec:tests-results-ci-1}
511 The exhaustive list of the geometrical attacks tested and the
512 corresponding graphs results is following:
515 \item \textbf{Robustness facing a resizing attack.}\\
516 See Figure~\ref{fig:resizing-attack-constant-strategy}~\vpageref{fig:resizing-attack-constant-strategy}.
517 \item \textbf{Robustness facing a JPEG attack.}\\See
518 Figure~\ref{fig:jpeg-attack-constant-strategy}~\vpageref{fig:jpeg-attack-constant-strategy}.
519 \item \textbf{Robustness facing a Gaussian blur
521 Figure~\ref{fig:gaussian-blur-attack-constant-strategy}~\vpageref{fig:gaussian-blur-attack-constant-strategy}.
522 \item \textbf{Robustness facing a rotation
524 Figure~\ref{fig:rotation-attack-constant-strategy}~\vpageref{fig:rotation-attack-constant-strategy}.
525 \item \textbf{Robustness facing a blur
527 Figure~\ref{fig:blur-attack-constant-strategy}~\vpageref{fig:blur-attack-constant-strategy}.
528 \item \textbf{Robustness facing a contrast
530 Figure~\ref{fig:contrast-attack-constant-strategy}~\vpageref{fig:contrast-attack-constant-strategy}.
531 \item \textbf{Robustness facing a cropping
533 Figure~\ref{fig:cropping-attack-constant-strategy}~\vpageref{fig:cropping-attack-constant-strategy}.
539 % %\includegraphics[width=10.5cm]{./img/prisoner-problem.png}
540 % \includegraphics[width=15cm]{./img/prisoner-problem}
543 % \caption{Simmons' prisoner problem~\cite{Simmons83}}
548 \begin{minipage}[b]{.45\linewidth}
550 \centerline{\includegraphics[width=9cm]{graphs/graph_1_attack=redimensionnement-average}}
551 \centerline{(a) Average}
554 \begin{minipage}[b]{0.45\linewidth}
556 \centerline{\includegraphics[width=9cm]{graphs/graph_1_attack=redimensionnement-sd}}
557 \centerline{(b) Standard deviation}
559 \caption{Robustness of $CI_1$ facing a resizing attack.(600 images and constant strategy)}
560 \label{fig:resizing-attack-constant-strategy}
564 \begin{minipage}[b]{.45\linewidth}
566 \centerline{\includegraphics[width=9cm]{graphs/graph_2_attack=jpeg-average}}
567 \centerline{(a) Average}
570 \begin{minipage}[b]{0.45\linewidth}
572 \centerline{\includegraphics[width=9cm]{graphs/graph_2_attack=jpeg-sd}}
573 \centerline{(b) Standard deviation}
575 \caption{Robustness of $CI_1$ facing a JPEG compression attack.(600 images and
577 \label{fig:jpeg-attack-constant-strategy}
582 \begin{minipage}[b]{.45\linewidth}
584 \centerline{\includegraphics[width=9cm]{graphs/graph_3_attack=gaussien-average}}
585 \centerline{(a) Average}
588 \begin{minipage}[b]{0.45\linewidth}
590 \centerline{\includegraphics[width=9cm]{graphs/graph_3_attack=gaussien-sd}}
591 \centerline{(b) Standard deviation}
593 \caption{Robustness of $CI_1$ facing a Gaussian blur attack.(600 images and
595 \label{fig:gaussian-blur-attack-constant-strategy}
599 \begin{minipage}[b]{.45\linewidth}
601 \centerline{\includegraphics[width=9cm]{graphs/graph_4_attack=rotation-average}}
602 \centerline{(a) Average}
605 \begin{minipage}[b]{0.45\linewidth}
607 \centerline{\includegraphics[width=9cm]{graphs/graph_4_attack=rotation-sd}}
608 \centerline{(b) Standard deviation}
610 \caption{Robustness of $CI_1$ facing a rotation attack.(600 images and constant
612 \label{fig:rotation-attack-constant-strategy}
617 \begin{minipage}[b]{.45\linewidth}
619 \centerline{\includegraphics[width=9cm]{graphs/graph_5_attack=flou-average}}
620 \centerline{(a) Average}
623 \begin{minipage}[b]{0.45\linewidth}
625 \centerline{\includegraphics[width=9cm]{graphs/graph_5_attack=flou-sd}}
626 \centerline{(b) Standard deviation}
628 \caption{Robustness of $CI_1$ facing a blur attack.(600 images and constant
630 \label{fig:blur-attack-constant-strategy}
635 \begin{minipage}[b]{.45\linewidth}
637 \centerline{\includegraphics[width=9cm]{graphs/graph_6_attack=contraste-average}}
638 \centerline{(a) Average}
641 \begin{minipage}[b]{0.45\linewidth}
643 \centerline{\includegraphics[width=9cm]{graphs/graph_6_attack=contraste-sd}}
644 \centerline{(b) Standard deviation}
646 \caption{Robustness of $CI_1$ facing a contrast attack.(600 images and constant
648 \label{fig:contrast-attack-constant-strategy}
653 \begin{minipage}[b]{.45\linewidth}
655 \centerline{\includegraphics[width=9cm]{graphs/graph_7_attack=decoupage-average}}
656 \centerline{(a) Average}
659 \begin{minipage}[b]{0.45\linewidth}
661 \centerline{\includegraphics[width=9cm]{graphs/graph_7_attack=decoupage-sd}}
662 \centerline{(b) Standard deviation}
664 \caption{Robustness of $CI_1$ facing a cropping attack.(600 images and constant
666 \label{fig:cropping-attack-constant-strategy}
669 \subsection{Robustness evaluation}\label{sec:tests-results-ci-1}
671 From the results presented in the previous section, the robustness of the
672 process $CI_1$ can be evaluated.
675 As a first conclusion, it can be note that in the $CI_1$ watermarking process, the strategy has no
676 influence on the robustness. Indeed, analyzing all the curves, a strong
677 similarity between the curves obtained with a constant strategy and the curves obtained with a strategy generated randomly can
680 As a second conclusion, it can be note that the $CI_1$ watermarking process is
681 not robust in spatial domain facing attacks of resizing, of JPEG compression
682 with a compression rate lesser than 97\%, of Gaussian blur with a blur rate
683 greater than 42\%, of classic blur, of contrast, and of cropping with a number
684 of pixels greater than 180.
686 Inversely, $CI_1$ is robust in spatial domain facing geometrical attacks of JPEG
687 compression with a compression rate greater than 97\%, of Gaussian blur with a blur rate
688 lesser than 42\%, of rotation with angles between 0° and 30°, and of cropping
689 with a number of pixels lesser than 180.
693 \item \textbf{Robustness facing a resizing attack.}\\
694 See Figure~\ref{fig:resizing-attack-constant-strategy}~\vpageref{fig:resizing-attack-constant-strategy}.
695 \item \textbf{Robustness facing a JPEG compression
697 Figure~\ref{fig:jpeg-attack-constant-strategy}~\vpageref{fig:jpeg-attack-constant-strategy}.
698 \item \textbf{Robustness facing a Gaussian blur
700 Figure~\ref{fig:gaussian-blur-attack-constant-strategy}~\vpageref{fig:gaussian-blur-attack-constant-strategy}.
701 \item \textbf{Robustness facing a rotation
703 Figure~\ref{fig:rotation-attack-constant-strategy}~\vpageref{fig:rotation-attack-constant-strategy}.
704 \item \textbf{Robustness facing a blur
706 Figure~\ref{fig:blur-attack-constant-strategy}~\vpageref{fig:blur-attack-constant-strategy}.
707 \item \textbf{Robustness facing a contrast
709 Figure~\ref{fig:contrast-attack-constant-strategy}~\vpageref{fig:contrast-attack-constant-strategy}.
710 \item \textbf{Robustness facing a cropping
712 Figure~\ref{fig:cropping-attack-constant-strategy}~\vpageref{fig:cropping-attack-constant-strategy}.
715 ensuite il faut reprendre chaque courbe et énoncer une phrase du genre :
716 " on voit qu'on est loin d'une génération aléatoire des bits qui serait environ de 50%"
717 et donc on peut affirmer avec certitude que telle ou telle image est tatouée ou non.
722 To conclude, at this point, only two information hiding schemes are both stego-secure and chaos-secure \cite{gfb10:ip}.
723 The first one is based on a spread spectrum technique called Natural Watermarking.
724 It is stego-secure when its parameter $\eta$ is equal to $1$ \cite{Cayre2008}.
725 Unfortunately, this scheme is neither robust, nor able to face an attacker in KOA and KMA setups, due to its lack of a topological property called expansivity \cite{gfb10:ip}.
726 The second scheme both chaos-secure and stego-secure is based on chaotic iterations \cite{guyeux10ter}.
727 However, its first versions called $CI_1$ allows to embed securely only one bit per embedding parameters.
728 The objective of the next sections is to improve the $CI_1$ scheme presented in \cite{guyeux10ter}, in such a way that more than one bit can be embedded.