2 \subsection{Study of stego-security}\label{sec:stego-security-ci-2}
5 \noindent Let us prove that,
12 %We suppose that $K,M \sim
13 %\mathbf{U}\left([0;1]\right)$, and $X \sim
14 %We consider a strategy in the CIIS scheme, and we
15 Let us suppose that $x^0 \sim
16 \mathbf{U}\left(\mathbb{B}^N\right)$ and $m^0 \sim
17 \mathbf{U}\left(\mathbb{B}^P\right)$ in a \CID setup.
18 We will prove by a mathematical induction that $\forall n \in \mathds{N}, x^n
19 \sim \mathbf{U}\left(\mathbb{B}^N\right)$. The base case is obvious according
20 to the uniform repartition hypothesis.
22 Let us now suppose that the statement $x^n \sim
23 \mathbf{U}\left(\mathbb{B}^N\right)$ holds for some $n$.
24 For a given $k \in \mathbb{B}^N$,
25 we denote by $\tilde{k_i} \in \mathbb{B}^N$ the vector defined by: $\forall i
26 \in \llbracket 0;\mathsf{N-1}\rrbracket,$
28 $k=\left(k_0,k_1,\hdots,k_i,\hdots,k_{\mathsf{N}-2},k_{\mathsf{N}-1}\right)$,\newline
29 then $\tilde{k}_i=\left( k_0,k_1,\hdots,\overline{k_i},\hdots,k_{\mathsf{N}-2},k_{\mathsf{N}-1} \right).$
34 $E_{i,j}$ be the following events: $$\forall (i,j) \in \llbracket
35 0;\mathsf{N-1}\rrbracket \times \llbracket 0;\mathsf{P-1}\rrbracket, E_{i,j}=$$
36 $$S_p^{n+1}=i \wedge S_c^{n+1}=j \wedge m_j^{n+1}=k_i \wedge \left(x^n=k \vee
37 x^n=\tilde{k}_i\right),$$ and
38 $p=P\left(x^{n+1}=k\right).$
41 p=P\left(\bigvee_{i \in \llbracket
42 0;\mathsf{N-1}\rrbracket, j \in \llbracket 0;\mathsf{P-1}\rrbracket}
45 We now introduce the following notation: $P_1(i)=P\left(S_p^{n+1}=i\right),$
46 $P_2(j)=P\left(S_c^{n+1}=j\right),$
47 $P_3(i,j)=P\left(m_j^{n+1}=k_i\right),$
48 and $P_4(i)=P\left(x^n=k \vee x^n=\tilde{k}_i\right).$
51 These four events are independent in \CID setup, thus:
53 p=\sum_{i \in \llbracket
54 0;\mathsf{N-1}\rrbracket, j \in \llbracket 0;\mathsf{P-1}\rrbracket}
55 P_1(i)P_2(i)P_3(i,j)P_4(i).
58 Proposition~\ref{prop:CIIS-stego-security}, $P\left(m_j^{n+1}=k_i\right)=\frac{1}{2}$.
59 As the two events are incompatible:
60 $$P\left(x^n=k \vee x^n=\tilde{k}_i\right)=P\left(x^n=k\right) + P\left(x^n=\tilde{k}_i\right).$$
63 Then, by using the inductive hypothesis:
64 $P\left(x^n=k\right)=\frac{1}{2^N},$
66 $P\left(x^n=\tilde{k}_i\right)=\frac{1}{2^N}.$
68 Let $S$ be defined by $$S=\sum_{i
69 \in \llbracket 0;\mathsf{N-1}\rrbracket, j \in \llbracket 0;\mathsf{P-1}\rrbracket}
71 Then $p = 2 \times \frac{1}{2} \times \frac{1}{2^N} \times S = \frac{1}{2^N} \times S$.
73 $S$ can now be evaluated:
77 \in \llbracket 0;\mathsf{N-1}\rrbracket, j \in \llbracket 0;\mathsf{P-1}\rrbracket}
79 & = & \sum_{i \in \llbracket 0;\mathsf{N-1}\rrbracket} P_1(i) \times \sum_{j \in \llbracket 0;\mathsf{P-1}\rrbracket}
84 The set of events $\left \{ S_p^{n+1}=i \right \}$ for $i \in \llbracket 0;N-1
85 \rrbracket$ and the set of events $\left \{ S_c^{n+1}=j \right \}$ for $j \in
86 \llbracket 0;P-1 \rrbracket$ are both a partition of the universe of possible,
89 %Evaluate now $ P\left(S^n=k\right)$.
91 %We have: $K^0 = M \otimes K \sim
92 %\mathbf{U}\left([0;1]\right)$, so $K^\prime=F\left( K^0,p \right) \sim
93 %\mathbf{U}\left([0;1]\right)$, because for PLCMs, ``Uniform input generate
94 %uniform output''~\cite{Lasota}.
95 %Well with an immediate proof by recurrence we have:
96 %$K^n \sim \mathbf{U}\left([0;1]\right)$. As $S^n = \left \lfloor N \times X^n
97 %\right \rfloor + 1$ we can deduce that: $S^n \sim
98 %\mathbf{U}\left([1;N]\right)$. Therefore: $ P\left(S^n=k\right)=\frac{1}{N}$.
102 %P\left(X^{n+1}=e\right) & =\frac{1}{2^N} \sum_{k=1}^N
103 % P\left(S^n=k\right) & \\
104 % & =\frac{1}{2^N} \sum_{k=1}^N \frac{1}{N} & \\
105 % & =\frac{1}{2^N} & \\
110 %P\left(X^{n+1}=e\right) & =\frac{1}{2^N} \sum_{k=1}^N
111 % P\left(S^n=k\right) & \\
112 %P\left(X^{n+1}=e\right) & =\frac{1}{2^N} \sum_{k=1}^N \frac{1}{N} &
115 $P\left(x^{n+1}=k\right)=\frac{1}{2^N}$, which leads to $x^{n+1} \sim
116 \mathbf{U}\left(\mathbb{B}^N\right)$.
117 This result is true $\forall n \in \mathds{N}$, we thus have proven that the
118 stego-content $y$ is uniform in the set of possible stego-content, so
119 $y \sim \mathbf{U}\left(\mathbb{B}^N\right) \text{
120 when } x \sim \mathbf{U}\left(\mathbb{B}^N\right).$
124 \subsection{Study of topological-security of
125 $CI_2$}\label{sec:chaos-security-ci2}
126 \subsubsection{\textbf{Topological model}}
127 \label{sec:CI2-topological-model}
129 %\section{THE NEW TOPOLOGICAL SPACE}
130 \noindent In this section, we prove that \CID can be modeled as a
131 discret dynamical system in a topological space.
132 We will show in the next section that \CID is a case of topological chaos in the sense of Devaney.
135 \paragraph{\textbf{Iteration Function and Phase Space}}\label{Defining}
138 %\begin{definition}[Function $F$]
142 F: & \llbracket0;\mathsf{N-1}\rrbracket \times
143 \mathds{B}^{\mathsf{N}}\times \llbracket0;\mathsf{P-1}\rrbracket \times
144 \mathds{B}^{\mathsf{P}}
145 \longrightarrow \mathds{B}^{\mathsf{N}} \\
146 & (k,x,\lambda,m) \longmapsto \left( \delta
147 (k,j).x_j+\overline{\delta (k,j)}.m_{\lambda}\right) _{j\in
148 \llbracket0;\mathsf{N-1}\rrbracket}\\
153 \noindent where + and . are the boolean addition and product operations.
155 Consider the phase space $\mathcal{X}_2$ defined as follow:
157 %\begin{definition}[Phase space $\mathcal{X}_2$]
160 \mathcal{X}_2 = \mathbb{S}_N \times \mathds{B}^\mathsf{N} \times \mathbb{S}_P
161 \times \mathds{B}^\mathsf{P} \times \mathbb{S}_P,
163 where $\mathbb{S}_N$ and $\mathbb{S}_P$ are the sets introduced in Section \ref{section:Algorithm}.
166 We define the map $\mathcal{G}_{f_0}:\mathcal{X}_2 \longrightarrow \mathcal{X}_2$ by:
169 \mathcal{G}_{f_0}\left(S_p,x,S_c,m,S_m\right) =
173 F(i_N(S_p),x,i_P(S_c),m),\sigma_P(S_c),G_{f_0}(m,S_m),\sigma_P(S_m)\right)
176 \noindent Then \CID can be described by the
177 iterations of the following discret dynamical system:
179 %\begin{definition}[Discret Dynamical System for \CID]
183 X^0 \in \mathcal{X}_2 \\
184 X^{k+1}=\mathcal{G}_{f_0}(X^k).%
191 \paragraph{\textbf{Cardinality of $\mathcal{X}_2$}}
193 By comparing $\mathcal{X}_2$ and $\mathcal{X}_1$, we have the following result.
196 The phase space $\mathcal{X}_2$ has, at least, the cardinality of the continuum.
200 Let $\varphi$ be the map defined as follow:
204 \varphi: & \mathcal{X}_1 & \longrightarrow & \mathcal{X}_2 \\
205 & (S,x) & \longmapsto &(S,x,0,0,0)\\
209 \noindent $\varphi$ is injective.
210 So the cardinality of $\mathcal{X}_2$ is greater than or equal to the
211 cardinality of $\mathcal{X}_1$. And consequently
212 $\mathcal{X}_2$ has at least the cardinality of the continuum.
217 This result is independent on the number of cells of the system.
221 \paragraph{\textbf{A New Distance on $\mathcal{X}_2$}}
223 We define a new distance on $\mathcal{X}_2$ as follow:
224 %\begin{definition}[Distance $d_2$ on $\mathcal{X}_2$]
225 $\forall X,\check{X} \in \mathcal{X}_2,$ if $X =(S_p,x,S_c,m,S_m)$ and
226 $\check{X} = (\check{S_p},\check{x},\check{S_c},\check{m}, \check{S_m}),$ then:
229 d_2(X,\check{X}) & = &
230 d_{\mathds{B}^{\mathsf{N}}}(x,\check{x})+d_{\mathds{B}^{\mathsf{P}}}(m,\check{m})\\
232 d_{\mathbb{S}_N}(S_p,\check{S_p})+d_{\mathbb{S}_P}(S_c,\check{S_c})+d_{\mathbb{S}_P}(S_m,\check{S_m}),\\
235 where $d_{\mathds{B}^{\mathsf{N}}}$, $d_{\mathds{B}^{\mathsf{P}}}$,
236 $d_{\mathbb{S}_N}$, and $d_{\mathbb{S}_P}$ are the same distances than in
237 Definition~\ref{def:distance-on-X1}.
245 \subsubsection{\textbf{Continuity of $CI_2$}}
247 To prove that \CID is another example of topological chaos in the
248 sense of Devaney, $\mathcal{G}_{f_0}$ must be continuous on the metric
249 space $(\mathcal{X}_2,d_2)$.
252 $\mathcal{G}_{f_0}$ is a continuous function on $(\mathcal{X}_2,d_2)$.
256 We use the sequential continuity.
258 Let $((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)_{n\in \mathds{N}}$ be a sequence of the
259 phase space $\mathcal{X}_2$, which converges to $(S_p,x,S_c,m,S_m)$. We will
260 prove that $\left( \mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)\right)
261 _{n\in \mathds{N}}$ converges to $\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$. Let us
262 recall that for all $n$, $(S_p)^n$, $(S_c)^n$ and $(S_m)^n$ are strategies, thus
263 we consider a sequence of strategies (\emph{i.e.}, a sequence of sequences).
266 As $d_2(((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n),(S_p,x,S_c,m,S_m))$ converges to 0,
268 $d_{\mathds{B}^{\mathsf{N}}}(x^n,x)$, $d_{\mathds{B}^{\mathsf{P}}}(m^n,m)$,
269 $d_{\mathbb{S}_N}((S_p)^n,S_p)$, $d_{\mathbb{S}_P}((S_c)^n,S_c)$, and
270 $d_{\mathbb{S}_P}((S_m)^n,S_m)$ converges to 0. But
271 $d_{\mathds{B}^{\mathsf{N}}}(x^n,x)$ and $d_{\mathds{B}^{\mathsf{P}}}(m^n,m)$
272 are integers, so $\exists n_{0}\in \mathds{N}, \forall
274 d_{\mathds{B}^{\mathsf{N}}}(x^n,x)=0$ and $\exists n_{1}\in \mathds{N},
275 \forall n \geqslant n_1, d_{\mathds{B}^{\mathsf{P}}}(m^n,m)=0$.
277 Let $n_3=Max(n_0,n_1)$.
278 In other words, there exists a threshold $n_{3}\in \mathds{N}$ after which no
279 cell will change its state:
280 $\exists n_{3}\in \mathds{N},n\geqslant n_{3}\Longrightarrow (x^n = x) \wedge
283 In addition, $d_{\mathbb{S}_N}((S_p)^n,S_p)\longrightarrow 0$,
284 $d_{\mathbb{S}_P}((S_c)^n,S_c)\longrightarrow 0$, and
285 $d_{\mathbb{S}_P}((S_m)^n,S_m)\longrightarrow 0$, so $\exists n_4,n_5,n_6\in
288 \item $\forall n \geqslant n_4, d_{\mathbb{S}_N}((S_p)^n,S_p)<10^{-1}$,
289 \item $\forall n \geqslant n_5, d_{\mathbb{S}_P}((S_c)^n,S_c)<10^{-1}$,
290 \item $\forall n \geqslant n_6, d_{\mathbb{S}_P}((S_m)^n,S_m)<10^{-1}$.
293 Let $n_7=Max(n_4,n_5,n_6)$. For
294 $n\geqslant n_7$, all the strategies $(S_p)^n$, $(S_c)^n$, and $(S_m)^n$ have
295 the same first term, which are respectively $(S_p)_0$,$(S_c)_0$ and $(S_m)_0$
296 :$\forall n\geqslant n_7,$ $$((S_p)_0^n={(S_p)}_0)\wedge
297 ((S_c)_0^n={(S_c)}_0)\wedge ((S_m)_0^n={(S_m)}_0).
300 Let $n_8=Max(n_3,n_7)$.
301 After the $n_8-$th term, states of $x^n$ and $x$ on the one hand, and $m^n$ and $m$ on the other hand, are
302 identical. Additionally, strategies $(S_p)^n$ and $S_p$, $(S_c)^n$ and $S_c$,
303 and $(S_m)^n$ and $S_m$ start with the same first term.
305 Consequently, states of
306 $\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)$ and
307 $\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$ are equal, so, after the $(n_8)^{th}$ term,
308 the distance $d_2$ between these two points is strictly smaller than $3.10^{-1}$, so strictly smaller than 1.
310 We now prove that the distance between $\left(
311 \mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)\right) $ and $\left(
312 \mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)\right) $ is convergent to 0.
313 Let $\varepsilon >0$.
316 \item If $\varepsilon \geqslant 1$, we have seen that distance
317 between $\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)$ and
318 $\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$ is
319 strictly less than 1 after the $(n_8)^{th}$ term (same state).
322 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
323 \frac{\varepsilon}{3} \geqslant 10^{-(k+1)}$. As
324 $d_{\mathbb{S}_N}((S_p)^n,S_p)$, $d_{\mathbb{S}_P}((S_c)^n,S_c)$ and
325 $d_{\mathbb{S}_P}((S_m)^n,S_m)$ converges to 0, we have:
327 \item $\exists n_9\in \mathds{N},\forall n\geqslant
328 n_9,d_{\mathbb{S}_N}((S_p)^n,S_p)<10^{-(k+2)}$,
329 \item $\exists n_{10}\in \mathds{N},\forall n\geqslant
330 n_{10},d_{\mathbb{S}_P}((S_c)^n,S_c)<10^{-(k+2)}$,
331 \item $\exists n_{11}\in \mathds{N},\forall n\geqslant
332 n_{11},d_{\mathbb{S}_P}((S_m)^n,S_m)<10^{-(k+2)}$.
335 Let $n_{12}=Max(n_9,n_{10},n_{11})$
336 thus after $n_{12}$, the $k+2$ first terms of $(S_p)^n$ and $S_p$, $(S_c)^n$ and
337 $S_c$, and $(S_m)^n$ and $S_m$, are equal.
340 \noindent As a consequence, the $k+1$ first entries of the strategies of
341 $\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)$ and $
342 \mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$ are the same
343 (due to the shift of strategies) and following the definition of
344 $d_{\mathbb{S}_N}$ and $d_{\mathbb{S}_P}$:
345 $$d_2\left(\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n);\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)\right)$$
347 $$d_{\mathbb{S}_N}((S_p)^n,S_p) + d_{\mathbb{S}_P}((S_c)^n,S_c) +
348 d_{\mathbb{S}_P}((S_m)^n,S_m)$$
349 which is smaller than $3.10^{-(k+1)} \leqslant 3.\frac{\varepsilon}{3} =\varepsilon$.
351 Let $N_{0}=max(n_{8},n_{12})$. We can claim that
353 \forall \varepsilon >0,\exists N_{0}\in \mathds{N},\forall n\geqslant N_{0},
356 d_2\left(\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n);\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)\right)
357 \leqslant \varepsilon .
359 $\mathcal{G}_{f_0}$ is consequently continuous on $(\mathcal{X}_2,d_2)$.
364 % >>>>>>>>>>>>>>>>>>>>>> Discrete chaotic iterations as topological chaos <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
365 %\subsection{Study of chaos-security}\label{section:chaos-security-ci-2}
367 \noindent To prove that we are in the framework of Devaney's topological chaos,
368 we have to check the regularity, transitivity, and sensitivity conditions.
369 %It will be proven that $\mathcal{G}_{f_0}$ function as introduce in
370 %definition~\ref{} satisfies these three hypotheses.
374 \subsubsection{\textbf{Regularity}}
376 \begin{proposition}%[Regularity of $\mathcal{G}_{f_0}$]
377 \label{prop:regularite}
378 Periodic points of $\mathcal{G}_{f_0}$ are dense in $\mathcal{X}_2$.
382 Let $(\check{S_p},\check{x},\check{S_c},\check{m}, \check{S_m})\in
383 \mathcal{X}_2$ and $\varepsilon >0$. We are looking for a periodic point
384 $(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m}, \widetilde{S_m})$
385 satisfying $d_2((\check{S_p},\check{x},\check{S_c},\check{m},
386 \check{S_m});(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m},
387 \widetilde{S_m}))<\varepsilon$.
389 As $\varepsilon$ can be strictly lesser than 1, we must choose
390 $\widetilde{x} = \check{x}$ and
391 $\widetilde{m} = \check{m}$.
392 Let us define $k_0(\varepsilon) =\lfloor
393 - log_{10}(\frac{\varepsilon}{3} )\rfloor +1$ and consider the set:
394 $\mathcal{S}_{\check{S_p},\check{S_c},\check{S_m}, k_0(\varepsilon)} =$
396 \in \mathbb{S}_N \times \mathbb{S}_P \times \mathbb{S}_P/ ((S_p)^k =
397 \check{S_p}^k) \wedge ((S_c)^k =\check{S_c}^k))\right.$
398 $\left.\wedge ((S_m)^k=\check{S_m}^k)), \forall k \leqslant k_0(\varepsilon)
403 $\forall (S_p,S_c,S_m) \in
404 \mathcal{S}_{\check{S_p},\check{S_c},\check{S_m},k_0(\varepsilon)},$
405 $d_2((S_p,\check{x},S_c,\check{m},S_m);(\check{S_p},\check{x},\check{S_c},\check{m},
406 \check{S_m})) < 3.\frac{\varepsilon}{3}=\varepsilon.$
407 It remains to choose $(\widetilde{S_p},\widetilde{S_c},\widetilde{S_m}) \in
408 \mathcal{S}_{\check{S_p},\check{S_c},\check{S_m}, k_0(\varepsilon)}$ such that
409 $(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m}, \widetilde{S_m})
410 = (\widetilde{S_p},\check{x},\widetilde{S_c},\check{m}, \widetilde{S_m})$ is
411 a periodic point for $\mathcal{G}_{f_0}$.
414 $\left\{ i \in \llbracket0;\mathsf{N-1}\rrbracket / x_i \neq
415 \check{x_i}, \text{ where }\right.$
416 $\left.(S_p,x,S_c,m,S_m) = \mathcal{G}_{f_0}^{k_0}
417 (\check{S_p},\check{x},\check{S_c},\check{m},\check{S_m}) \right\},$
418 $\lambda = card(\mathcal{J})$, and
419 $j_0 <j_1 < ... < j_{\lambda-1}$ the elements of $ \mathcal{J}$.
422 \item Let us firstly build three strategies: $S_p^\ast$, $S_c^\ast$, and
423 $S_m^\ast$, as follows.
426 $(S_p^\ast)^k=\check{S_p}^k$, $(S_c^\ast)^k=\check{S_c}^k$, and
427 $(S_m^\ast)^k=\check{S_m}^k$, if $k \leqslant k_0(\varepsilon).$
428 \item Let us now explain how to replace $\check{x}_{j_q}$, $\forall q \in
429 \llbracket0;\mathsf{\lambda-1}\rrbracket$:\newline
430 First of all, we must replace $\check{x}_{j_0}$:
432 \item If $\exists \lambda_0 \in \llbracket0;\mathsf{P-1}\rrbracket /
433 \check{x}_{j_0}=m_{\lambda_0}$, then we can choose
434 $(S_p^\ast)^{k_0+1}=j_0$, $(S_c^\ast)^{k_0+1}=\lambda_0$,
435 $(S_m^\ast)^{k_0+1}=\lambda_0$, and so $I_{j_0}$ will be equal to $1$.
436 \item If such a $\lambda_0$ does not exist, we choose:\newline
437 $(S_p^\ast)^{k_0+1}=j_0$, $(S_c^\ast)^{k_0+1}=0$, $(S_m^\ast)^{k_0+1}=0$,\newline $(S_p^\ast)^{k_0+2}=j_0$,
438 $(S_c^\ast)^{k_0+2}=0$, $(S_m^\ast)^{k_0+2}=0$, \newline and
441 All of the $\check{x}_{j_q}$ are replaced similarly.
442 The other terms of $S_p^\ast$, $S_c^\ast$, and
443 $S_m^\ast$ are constructed identically, and the values of $I_{j_q}$ are defined in
444 the same way.\newline
445 Let $\gamma = \sum_{q=0}^{\lambda-1}I_{j_q}$.
448 \item Finally, let $(S_p^\ast)^{k}=(S_p^\ast)^{j}$,
449 $(S_c^\ast)^{k}=(S_c^\ast)^{j}$, and $(S_m^\ast)^{k}=(S_m^\ast)^{j}$, where
450 $j\leqslant k_{0}(\varepsilon )+\gamma$ is satisfying $j\equiv k~[\text{mod } (k_{0}(\varepsilon )+\gamma)]$, if
451 $k>k_{0}(\varepsilon )+\gamma$.
454 $\mathcal{G}_{f_0}^{k_{0}(\varepsilon
455 )+\gamma}(S_p^\ast,\check{x},S_c^\ast,\check{m},S_m^\ast)=(S_p^\ast,\check{x},S_c^\ast,m,S_m^\ast).$
456 Let $\mathcal{K} =\left\{ i \in \llbracket0;\mathsf{P-1}\rrbracket / m_i \neq
457 \check{m_i}, \text{ where }\right.$\newline
458 $\left.\mathcal{G}_{f_0}^{k_{0}(\varepsilon
459 )+\gamma}(S_p^\ast,\check{x},S_c^\ast,\check{m},S_m^\ast)=(S_p^\ast,\check{x},S_c^\ast,m,S_m^\ast)
461 $\mu = card(\mathcal{K})$, and
462 $r_0 <r_1 < ... < r_{\mu-1}$ the elements of $ \mathcal{K}$.
466 \item Let us now build the strategies $\widetilde{S_p}$,
467 $\widetilde{S_c}$, $\widetilde{S_m}$.
469 \item Firstly, let $\widetilde{S_p}^k=(S_p^\ast)^k$,
470 $\widetilde{S_c}^k=(S_c^\ast)^k$, and $\widetilde{S_m}^k=(S_m^\ast)^k$, if $k
471 \leqslant k_0(\varepsilon) + \gamma.$
472 \item How to replace $\check{m}_{r_q}, \forall q \in
473 \llbracket0;\mathsf{\mu-1}\rrbracket$:\newline
475 First of all, let us explain how to replace $\check{m}_{r_0}$:
477 \item If $\exists \mu_0 \in \llbracket0;\mathsf{N-1}\rrbracket /
478 \check{x}_{\mu_0}=m_{r_0}$, then
479 we can choose $\widetilde{S_p}^{k_0+\gamma +1}=\mu_0$,
480 $\widetilde{S_c}^{k_0+\gamma +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
481 +1}=r_0$.\newline In that situation, we define $J_{r_0}=1$.
482 \item If such a $\mu_0$ does not exist, then we can choose:\newline
483 $\widetilde{S_p}^{k_0+\gamma +1}=0$, $\widetilde{S_c}^{k_0+\gamma
484 +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
486 $\widetilde{S_p}^{k_0+\gamma +2}=0$, $\widetilde{S_c}^{k_0+\gamma
487 +2}=r_0$, $\widetilde{S_m}^{k_0+\gamma
489 $\widetilde{S_p}^{k_0+\gamma +3}=0$, $\widetilde{S_c}^{k_0+\gamma
490 +3}=r_0$, $\widetilde{S_m}^{k_0+\gamma
494 Then the other $\check{m}_{r_q}$ are replaced as previously,
495 the other terms of $\widetilde{S_p}$,
496 $\widetilde{S_c}$, and $\widetilde{S_m}$ are constructed in the same way, and
497 the values of $J_{r_q}$ are defined similarly.\newline
498 Let $\alpha = \sum_{q=0}^{\mu-1}J_{r_q}$.
500 \item Finally, let $\widetilde{S_p}^{k}=\widetilde{S_p}^{j}$,
501 $\widetilde{S_c}^{k}=\widetilde{S_c}^{j}$, and
502 $\widetilde{S_m}^{k}=\widetilde{S_m}^{j}$ where $j\leqslant k_{0}(\varepsilon
503 )+\gamma +\alpha$ is satisfying $j\equiv k~[\text{mod } (k_{0}(\varepsilon
504 )+\gamma + \alpha)]$, if $k>k_{0}(\varepsilon )+\gamma + \alpha$.
509 So, $\mathcal{G}_{f_0}^{k_{0}(\varepsilon
510 )+\gamma+\alpha}(\widetilde{S_p},\check{x},\widetilde{S_c},\check{m},\widetilde{S_m})=(\widetilde{S_p},\check{x},\widetilde{S_c},\check{m},\widetilde{S_m})$
515 Then, $(\widetilde{S_p},\widetilde{S_c},\widetilde{S_m}) \in
516 \mathcal{S}_{\check{S_p},\check{S_c},\check{S_m},k_0(\varepsilon)}$ defined as
517 previous is such that $(\widetilde{S_m},\check{x},\widetilde{S_m},\check{m},\widetilde{S_m})$
518 is a periodic point, of period $k_{0}(\varepsilon
519 )+\gamma+\alpha$, which is $\varepsilon -$close to
520 $(\check{S_p},\check{x},\check{S_c},\check{m}, \check{S_m})$.
522 As a conclusion, $(\mathcal{X}_2,\mathcal{G}_{f_0})$ is regular.
525 \subsubsection{\textbf{Transitivity}}\label{sec:transitivite}
527 \begin{proposition}%[Transitivity of $ \mathcal{G}_{f_0}$]
528 \label{prop:transitivite}
529 $(\mathcal{X}_2,\mathcal{G}_{f_0})$ is topologically transitive.
533 Let us define $\mathcal{X}:\mathcal{X}_2\rightarrow \mathbb{B}^{\mathsf{N}},$
534 such that $\mathcal{X}(S_p,x,S_c,m,S_m)=x$ and
535 $\mathcal{M}:\mathcal{X}_2\rightarrow \mathbb{B}^{\mathsf{P}},$ such that
536 $\mathcal{M}(S_p,x,S_c,m,S_m)=m$. Let \linebreak
537 $\mathcal{B}_{A}=\mathcal{B}(X_{A},r_{A}) $ and
538 $\mathcal{B}_{B}=\mathcal{B}(X_{B},r_{B})$ be two open balls of $\mathcal{X}_2$,
539 with\linebreak $X_{A}=((S_p)_{A},x_{A},(S_c)_{A},m_{A},(S_m)_{A})$ and
540 $X_{B}=((S_p)_{B},x_{B},(S_c)_{B},m_{B},(S_m)_{B})$. We are looking for
541 $\widetilde{X}=(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m},\widetilde{S_m})$
542 in $\mathcal{B}_{A} $ such that $\exists n_{0}\in
543 \mathbb{N},\mathcal{G}_{f_0}^{n_{0}}(\widetilde{X})\in \mathcal{B}_{B}$.\newline
544 $\widetilde{X}$ must be in $\mathcal{B}_{A}$ and $r_{A}$ can be strictly
545 lesser than 1, so $\widetilde{x}=x_{A}$ and $\widetilde{m}=m_{A}$. Let
546 $k_{0}=\lfloor - \log _{10}(\frac{r_{A}}{3})+1\rfloor $.
547 Let us notice $\mathcal{S}_{X_{A}, k_0} =\left\{ (S_p,S_c,S_m)
548 \in \mathbb{S}_\mathsf{N}\times (\mathbb{S}_\mathsf{P})^2/ \forall k\leqslant k_{0},\right.$
549 $\left.(S_p^{k}=(S_p)_{A}^{k})\wedge
550 (S_c^{k}=(S_c)_{A}^{k})\wedge (S_m^{k}=(S_m)_{A}^{k}))\right\}$.
552 Then $\forall (S_p,S_c,S_m) \in \mathcal{S}_{X_{A}, k_0},
553 (S_p,\widetilde{x},S_c,\widetilde{m},S_m)\in \mathcal{B}_{A}.$
556 Let $\mathcal{J} =\left\{i\in
557 \llbracket0,\mathsf{N-1}\rrbracket/\check{x}_{i}\neq
558 \mathcal{X}(X_{B})_{i}, \text{ where }\right.$\newline
559 $\left.(\check{S_p},\check{x},\check{S_c},\check{m},\check{S_m})=\mathcal{G}_{f_0}^{k_{0}}(X_{A})\right\},$
560 $\lambda = card(\mathcal{J})$,\newline and
561 $j_0 <j_1 < ... < j_{\lambda-1}$ the elements of $ \mathcal{J}$.
564 \item Let us firstly build three strategies: $S_p^\ast$, $S_c^\ast$, and
565 $S_m^\ast$ as follows.
568 $(S_p^\ast)^k=(S_p)_A^k$, $(S_c^\ast)^k=(S_c)_A^k$, and
569 $(S_m^\ast)^k=(S_m)_A^k$, if $k \leqslant k_0.$
570 \item Let us now explain how to replace $\mathcal{X}(X_{B})_{j_q}$, $\forall q \in
571 \llbracket0;\mathsf{\lambda-1}\rrbracket$:\newline
572 First of all, we must replace $\mathcal{X}(X_{B})_{j_0}$:
574 \item If $\exists \lambda_0 \in \llbracket0;\mathsf{P-1}\rrbracket /
575 \mathcal{X}(X_{B})_{j_0}=\check{m}_{\lambda_0}$, then we can choose
576 $(S_p^\ast)^{k_0+1}=j_0$, $(S_c^\ast)^{k_0+1}=\lambda_0$,
577 $(S_m^\ast)^{k_0+1}=\lambda_0$, and so $I_{j_0}$ will be equal to $1$.
578 \item If such a $\lambda_0$ does not exist, we choose:\newline
579 $(S_p^\ast)^{k_0+1}=j_0$, $(S_c^\ast)^{k_0+1}=0$,
580 $(S_m^\ast)^{k_0+1}=0$,\newline $(S_p^\ast)^{k_0+2}=j_0$,
581 $(S_c^\ast)^{k_0+2}=0$, $(S_m^\ast)^{k_0+2}=0$ \newline and so let us notice
584 All of the $\mathcal{X}(X_{B})_{j_q}$ are replaced similarly.
585 The other terms of $S_p^\ast$, $S_c^\ast$, and $S_m^\ast$ are constructed
586 identically, and the values of $I_{j_q}$ are defined on the same way.\newline Let $\gamma = \sum_{q=0}^{\lambda-1}I_{j_q}$.
589 \item $(S_p^\ast)^{k}=(S_p^\ast)^{j}$, $(S_c^\ast)^{k}=(S_c^\ast)^{j}$
590 and $(S_m^\ast)^{k}=(S_m^\ast)^{j}$ where $j\leqslant k_{0}+\gamma$
591 is satisfying $j\equiv k~[\text{mod } (k_{0}+\gamma)]$, if
594 So,$\mathcal{G}_{f_0}^{k_{0}+\gamma}((S_p^\ast,x_A,S_c^\ast,m_A,S_m^\ast))=(S_p^\ast,x_B,S_c^\ast,m,S_m^\ast)$
596 Let $\mathcal{K} =\left\{ i \in \llbracket0;\mathsf{P-1}\rrbracket / m_i \neq
597 \mathcal{M}(X_{B})_{i}, \text{ where }\right.$\newline
598 $\left.(S_p^\ast,x_B,S_c^\ast,m,S_m^\ast)=\mathcal{G}_{f_0}^{k_{0}+\gamma}((S_p^\ast,x_A,S_c^\ast,m_A,S_m^\ast))\right\},$\newline
599 $\mu = card(\mathcal{K})$ and $r_0 <r_1 < ... < r_{\mu-1}$ the elements of $
603 \item Let us secondly build three other strategies: $\widetilde{S_p}$,
604 $\widetilde{S_c}$, $\widetilde{S_m}$ as follows.
606 \item $\widetilde{S_p}^k=(S_p^\ast)^k$, $\widetilde{S_c}^k=(S_c^\ast)^k$, and
607 $\widetilde{S_m}^k=(S_m^\ast)^k$, if $k \leqslant k_0 + \gamma.$
608 \item Let us now explain how to replace $\mathcal{M}(X_{B})_{r_q}, \forall q
609 \in \llbracket0;\mathsf{\mu-1}\rrbracket$:
611 First of all, we must replace $\mathcal{M}(X_{B})_{r_0}$:
613 \item If $\exists \mu_0 \in \llbracket0;\mathsf{N-1}\rrbracket /
614 \mathcal{M}(X_{B})_{r_0}=(x_B)_{\mu_0}$, then we can choose
615 $\widetilde{S_p}^{k_0+\gamma +1}=\mu_0$, $\widetilde{S_c}^{k_0+\gamma
616 +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
617 +1}=r_0$, and $J_{r_0}$ will be equal to $1$.
618 \item If such a $\mu_0$ does not exist, we choose:
619 $\widetilde{S_p}^{k_0+\gamma +1}=0$, $\widetilde{S_c}^{k_0+\gamma
620 +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
622 $\widetilde{S_p}^{k_0+\gamma +2}=0$, $\widetilde{S_c}^{k_0+\gamma
623 +2}=r_0$, $\widetilde{S_m}^{k_0+\gamma
625 $\widetilde{S_p}^{k_0+\gamma +3}=0$, $\widetilde{S_c}^{k_0+\gamma
626 +3}=r_0$, $\widetilde{S_m}^{k_0+\gamma
628 and so let us notice $J_{r_0}=3$.\newline
630 All the $\mathcal{M}(X_{B})_{r_q}$ are replaced similarly.
631 The other terms of $\widetilde{S_p}$,
632 $\widetilde{S_c}$, and $\widetilde{S_m}$ are constructed identically, and the
633 values of $J_{r_q}$ are defined on the same way.\newline
634 Let $\alpha = \sum_{q=0}^{\mu-1}J_{r_q}$.
636 \item $\forall k \in \mathbb{N}^\ast, \widetilde{S_p}^{k_0+ \gamma + \alpha
637 + k}=(S_p)_B^{k}$, $\widetilde{S_c}^{k_0+ \gamma + \alpha + k}=(S_c)_B^{k}$, and
638 $\widetilde{S_m}^{k_0+ \gamma + \alpha + k}=(S_m)_B^{k}$.
643 $\mathcal{G}_{f_0}^{k_{0}+\gamma+\alpha}(\widetilde{S_p},x_A,\widetilde{S_c},m_A,\widetilde{S_m})=X_B$,
644 with $(\widetilde{S_p},\widetilde{S_c},\widetilde{S_m}) \in \mathcal{S}_{X_{A},
646 Then $\widetilde{X} = (\widetilde{S_p},x_A,\widetilde{S_c},m_A,\widetilde{S_m})
647 \in \mathcal{X}_2$ is such that $\widetilde{X} \in \mathcal{B}_A$ and
648 $\mathcal{G}_{f_0}^{k_0+\gamma+\alpha}( \widetilde{X}) \in \mathcal{B}_B$.
649 Finally we have proven the result.
652 \subsubsection{\textbf{Sensibility to the Initial
653 Condition}}\label{sec:sensibilite}
655 \begin{proposition}%[Sensitivity of $,\mathcal{G}_{f_0}$]
656 \label{prop:sensibilite}
657 $(\mathcal{X}_2,\mathcal{G}_{f_0})$ has sensitive dependence on initial conditions.
661 $\mathcal{G}_{f_0}$ is regular and transitive. Due to Theorem~\ref{theo:banks}, $\mathcal{G}_{f_0}$ is sensitive.
664 %In a following section, we will show that this result can be stated independently of regularity,
665 %which must be redefined in the context of the finite set of
666 %machine numbers (see section \ref{Concerning}).
668 %In addition, the constant of sensitivity will be computed.
671 %This sensitive dependence could be stated as a consequence of regularity and
672 %transitivity (by using the theorem of Banks~\cite{Banks92}). However, we
673 %prefer to prove this result independently of regularity, because the
674 %notion of regularity must be redefined in the context of the finite set of
675 %machine numbers (see section \ref{Concerning}).
677 %In addition, the constant of sensitivity has been computed.
679 \subsubsection{\textbf{Devaney's topological chaos}}
683 In conclusion, $(\mathcal{X}_2,\mathcal{G}_{f_0})$ is topologically transitive, regular,
684 and has sensitive dependence on initial conditions. Then according to
685 Devaney's topological chaos
686 defintition~\ref{def:chaos-devaney}~\vpageref{def:chaos-devaney}, we have the result.
688 \begin{theorem}%[$\mathcal{G}_{f_0}$ is a chaotic map]
690 $\mathcal{G}_{f_0}$ is a chaotic map on $(\mathcal{X}_2,d_2)$ in the sense of Devaney.
693 So we can claim that:
695 \begin{theorem}%[topological-security of \CID]
696 \label{theo:CID-chaosecurity}
697 \CID is chaos-secure.
701 \subsection{Quantitative property of \CID}\label{sec:quantitative-properties-ci2}
703 In this section, it is studied one of the quantitative properties of the
704 topological-security of the steganographic process \CID: the constant of
705 sensitivity evaluation.
707 \begin{proposition}%[Constant of sensitivity of $ \mathcal{G}_{f_0}$]
708 \label{prop:sensitivity-constant-evaluation}
710 $(\mathcal{X}_2,\mathcal{G}_{f_0})$ has sensitive dependence on initial
711 conditions, and it constant of sensitivity is equal to $N-1$.
715 Let us define $\mathcal{X}:\mathcal{X}_2\rightarrow \mathbb{B}^{\mathsf{N}},$
716 such that $\mathcal{X}(S_p,x,S_c,m,S_m)=x$ and
717 $\mathcal{M}:\mathcal{X}_2\rightarrow \mathbb{B}^{\mathsf{P}},$ such that
718 $\mathcal{M}(S_p,x,S_c,m,S_m)=m$.
720 Let $\check{X}=(\check{S_p},\check{x},\check{S_c},\check{m}, \check{S_m})\in
721 \mathcal{X}_2$. We are looking for
722 $\widetilde{X}=(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m},\widetilde{S_m})$
723 in $\mathcal{X}_2$ such that $d_2\left(\check{X},\widetilde{X} \right) \leq
724 \delta$ and $\exists n_0 \in \mathds{N},
725 d_2\left(\mathcal{G}_{f_0}^{n_0}(\check{X}),\mathcal{G}_{f_0}^{n_0}(\widetilde{X})
727 Let $k_{0}=\lfloor - \log _{10}(\frac{\delta}{3}\rfloor +1$,
728 and consider the set:
729 $\mathcal{S}_{\check{S_p},\check{S_c},\check{S_m}, k_0} =$
731 \in \mathbb{S}_N \times \mathbb{S}_P \times \mathbb{S}_P/ ((S_p)^k =
732 \check{S_p}^k) \wedge ((S_c)^k =\check{S_c}^k))\right.$
733 $\left.\wedge ((S_m)^k=\check{S_m}^k)), \forall k \leqslant k_0(\varepsilon)
736 $\forall (S_p,S_c,S_m) \in
737 \mathcal{S}_{\check{S_p},\check{S_c},\check{S_m},k_0},$
738 $d_2((S_p,\check{x},S_c,\check{m},S_m);(\check{S_p},\check{x},\check{S_c},\check{m},
739 \check{S_m})) < 3.\frac{\delta}{3}=\delta.$
741 Let $\mathcal{J} =\left\{i\in
742 \llbracket0,\mathsf{N-1}\rrbracket/
743 \mathcal{X}\left(\mathcal{G}_{f_0}^{k_{0}}(\check{S})\right)_{i} \neq
744 \mathcal{X}\left(\mathcal{G}_{f_0}^{k_{0}+N}(\check{S})\right)_{i}\right\}$ the
745 set of indexes of cells of the second component different between the two states
746 $\mathcal{G}_{f_0}^{k_{0}}(\check{X})$ and
747 $\mathcal{G}_{f_0}^{k_{0}+N}(\check{X})$.
749 Let $\lambda = card(\mathcal{J})$ the number of differences.
752 \item If $\lambda = N$, then the point
753 $(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m},\widetilde{S_m})$
754 defined by: \begin{enumerate}
755 \item $\widetilde{x}$ = $\check{x}$ and $\widetilde{m}$ = $\check{m}$ in
756 order to have the same cells that $\check{X}$, and thus be at a distance less than 1 of $\check{X}$.
757 \item $\forall k \leqslant k_0, \widetilde{S_p}^k= \check{S_p}^k$,
758 $\widetilde{S_c}^k= \check{S_c}^k$, and $\widetilde{S_m}^k= \check{S_m}^k$.
759 \item Let us now explain how to replace $\mathcal{X}(X_{B})_{j_q}$, $\forall q \in
760 \llbracket0;\mathsf{\lambda-1}\rrbracket$:\newline
761 First of all, we must replace $\mathcal{X}(X_{B})_{j_0}$:
763 \item If $\exists \lambda_0 \in \llbracket0;\mathsf{P-1}\rrbracket /
764 \mathcal{X}(X_{B})_{j_0}=\check{m}_{\lambda_0}$, then we can choose
765 $(S_p^\ast)^{k_0+1}=j_0$, $(S_c^\ast)^{k_0+1}=\lambda_0$,
766 $(S_m^\ast)^{k_0+1}=\lambda_0$, and so $I_{j_0}$ will be equal to $1$.
767 \item If such a $\lambda_0$ does not exist, we choose:\newline
768 $(S_p^\ast)^{k_0+1}=j_0$, $(S_c^\ast)^{k_0+1}=0$,
769 $(S_m^\ast)^{k_0+1}=0$,\newline $(S_p^\ast)^{k_0+2}=j_0$,
770 $(S_c^\ast)^{k_0+2}=0$, $(S_m^\ast)^{k_0+2}=0$ \newline and so let us notice
773 All of the $\mathcal{X}(X_{B})_{j_q}$ are replaced similarly.
774 The other terms of $S_p^\ast$, $S_c^\ast$, and $S_m^\ast$ are constructed
775 identically, and the values of $I_{j_q}$ are defined on the same way.\newline Let $\gamma = \sum_{q=0}^{\lambda-1}I_{j_q}$.
778 \item $(S_p^\ast)^{k}=(S_p^\ast)^{j}$, $(S_c^\ast)^{k}=(S_c^\ast)^{j}$
779 and $(S_m^\ast)^{k}=(S_m^\ast)^{j}$ where $j\leqslant k_{0}+\gamma$
780 is satisfying $j\equiv k~[\text{mod } (k_{0}+\gamma)]$, if
783 So,$\mathcal{G}_{f_0}^{k_{0}+\gamma}((S_p^\ast,x_A,S_c^\ast,m_A,S_m^\ast))=(S_p^\ast,x_B,S_c^\ast,m,S_m^\ast)$
785 Let $\mathcal{K} =\left\{ i \in \llbracket0;\mathsf{P-1}\rrbracket / m_i \neq
786 \mathcal{M}(X_{B})_{i}, \text{ where }\right.$\newline
787 $\left.(S_p^\ast,x_B,S_c^\ast,m,S_m^\ast)=\mathcal{G}_{f_0}^{k_{0}+\gamma}((S_p^\ast,x_A,S_c^\ast,m_A,S_m^\ast))\right\},$\newline
788 $\mu = card(\mathcal{K})$ and $r_0 <r_1 < ... < r_{\mu-1}$ the elements of $
792 \item Let us secondly build three other strategies: $\widetilde{S_p}$,
793 $\widetilde{S_c}$, $\widetilde{S_m}$ as follows.
795 \item $\widetilde{S_p}^k=(S_p^\ast)^k$, $\widetilde{S_c}^k=(S_c^\ast)^k$, and
796 $\widetilde{S_m}^k=(S_m^\ast)^k$, if $k \leqslant k_0 + \gamma.$
797 \item Let us now explain how to replace $\mathcal{M}(X_{B})_{r_q}, \forall q
798 \in \llbracket0;\mathsf{\mu-1}\rrbracket$:
800 First of all, we must replace $\mathcal{M}(X_{B})_{r_0}$:
802 \item If $\exists \mu_0 \in \llbracket0;\mathsf{N-1}\rrbracket /
803 \mathcal{M}(X_{B})_{r_0}=(x_B)_{\mu_0}$, then we can choose
804 $\widetilde{S_p}^{k_0+\gamma +1}=\mu_0$, $\widetilde{S_c}^{k_0+\gamma
805 +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
806 +1}=r_0$, and $J_{r_0}$ will be equal to $1$.
807 \item If such a $\mu_0$ does not exist, we choose:
808 $\widetilde{S_p}^{k_0+\gamma +1}=0$, $\widetilde{S_c}^{k_0+\gamma
809 +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
811 $\widetilde{S_p}^{k_0+\gamma +2}=0$, $\widetilde{S_c}^{k_0+\gamma
812 +2}=r_0$, $\widetilde{S_m}^{k_0+\gamma
814 $\widetilde{S_p}^{k_0+\gamma +3}=0$, $\widetilde{S_c}^{k_0+\gamma
815 +3}=r_0$, $\widetilde{S_m}^{k_0+\gamma
817 and so let us notice $J_{r_0}=3$.\newline
819 All the $\mathcal{M}(X_{B})_{r_q}$ are replaced similarly.
820 The other terms of $\widetilde{S_p}$,
821 $\widetilde{S_c}$, and $\widetilde{S_m}$ are constructed identically, and the
822 values of $J_{r_q}$ are defined on the same way.\newline
823 Let $\alpha = \sum_{q=0}^{\mu-1}J_{r_q}$.
825 \item $\forall k \in \mathbb{N}^\ast, \widetilde{S_p}^{k_0+ \gamma + \alpha
826 + k}=(S_p)_B^{k}$, $\widetilde{S_c}^{k_0+ \gamma + \alpha + k}=(S_c)_B^{k}$, and
827 $\widetilde{S_m}^{k_0+ \gamma + \alpha + k}=(S_m)_B^{k}$.
832 $\mathcal{G}_{f_0}^{k_{0}+\gamma+\alpha}(\widetilde{S_p},x_A,\widetilde{S_c},m_A,\widetilde{S_m})=X_B$,
833 with $(\widetilde{S_p},\widetilde{S_c},\widetilde{S_m}) \in \mathcal{S}_{X_{A},
835 Then $\widetilde{X} = (\widetilde{S_p},x_A,\widetilde{S_c},m_A,\widetilde{S_m})
836 \in \mathcal{X}_2$ is such that $\widetilde{X} \in \mathcal{B}_A$ and
837 $\mathcal{G}_{f_0}^{k_0+\gamma+\alpha}( \widetilde{X}) \in \mathcal{B}_B$.
838 Finally we have proven the result.
842 \subsection{Qualitative property of
843 \CID}\label{sec:qualitative-properties-ci2}
845 In this section, it is studied one of the qualitative properties of the
846 topological-security of the steganographic process \CID: the strong
853 \subsection{Consequences in attacks
854 frameworks}\label{sec:qualitative-properties-ci2}
856 \textbf{TODO} In this section, it is given the implication of the qualitative
857 and quantitative properties of $CI_2$ in KOA, KMA,CMA and WOA setups.