1 % \subsection{Recall about \CID and topology}\label{sec:recall-ci2-topo}
4 % \subsubsection{Notations and
5 % terminologies}\label{sec:ci2-topological-model-notations}
9 \subsection{Topological Model}
10 \label{sec:cis2-topological-model}
12 % \section{THE NEW TOPOLOGICAL SPACE}
13 In this section, we firstly recall the topology used in~\cite{fgb11:ip},
14 to model the steganographic scheme \CID as a
15 discrete dynamical system in a topological space.
16 The security level of \CID is then recalled
17 at the end of this section.
24 % For $k \in \mathds{N}^\ast$,
25 % the \emph{initial function} is the map $i_k: \mathbb{S}_k \longrightarrow
26 % \llbracket 1, \mathsf{k} \rrbracket$ defined by $i_k\left((S^{n})_{n\in
27 % \mathds{N}}\right) = S^{0}$.
29 % Intuitivelly speaking, this function returns the first element of a strategy.
31 % \begin{definition}%[Shift function]
32 % Let $k \in \mathds{N}^\ast$. The \emph{shift
33 % function} is the map $\sigma_k: \mathbb{S}_k \longrightarrow
34 % \mathbb{S}_k$ defined by $\sigma_k\left((S^{n})_{n\in
35 % \mathds{N}}\right)=(S^{n+1})_{n\in \mathds{N}}$.
38 % Intuitivelly speaking,
39 % this function shifts the strategy to the right, or, equivalently,
40 % removes its first element.
41 % It is now possible to give some recalls in the field of the mathematical
42 % topology~\cite{Schwartz80} to make this document self contained.
44 % \subsection{Topological spaces, open sets, and neighborhoods}
46 % \subsection{Iteration Function, Phase Space, and Distance}
51 % \begin{definition}[Function $F$]
55 \mathcal{F}: & \llbracket0;\mathsf{N-1}\rrbracket \times
56 \mathds{B}^{\mathsf{N}}\times \llbracket0;\mathsf{P-1}\rrbracket \times
57 \mathds{B}^{\mathsf{P}}
58 \longrightarrow \mathds{B}^{\mathsf{N}} \\
59 & (k,x,\lambda,m) \longmapsto \left( \delta
60 (k,j).x_j+\overline{\delta (k,j)}.m_{\lambda}\right) _{j\in
61 \llbracket0;\mathsf{N-1}\rrbracket}\\
66 %\noindent where + and . are the Boolean addition and product operations.
67 \noindent where + and . are the Boolean ``or'' and ``and''
68 operators, and where $\delta(b_1,b_2)$ is 0 iff $b_1$ is equal to $b_2$.
70 Consider the phase space $\mathcal{X}_2$ defined as follows:
71 $\mathcal{X}_2 = \mathbb{S}_N \times \mathds{B}^\mathsf{N} \times \mathbb{S}_P
72 \times \mathds{B}^\mathsf{P} \times \mathbb{S}_P,$
73 %\begin{definition}[Phase space $\mathcal{X}_2$]
75 % \mathcal{X}_2 = \mathbb{S}_N \times \mathds{B}^\mathsf{N} \times \mathbb{S}_P
76 % \times \mathds{B}^\mathsf{P} \times \mathbb{S}_P,
78 where $\mathbb{S}_N$ and $\mathbb{S}_P$ are the sets introduced in
79 Section~\ref{sec:ci2:notations}.
83 The map $\mathcal{G}_{f_0}:\mathcal{X}_2 \longrightarrow
84 \mathcal{X}_2$ is defined by: $\mathcal{G}_{f_0}\left(S_p,x,S_c,m,S_m\right) = $
85 $$\left(\sigma_N(S_p),\mathcal{F}(i_N(S_p),x,i_P(S_c),m),\sigma_P(S_c),G_{f_0}(S_m,m),\sigma_P(S_m)\right)$$
87 % \mathcal{G}_{f_0}\left(S_p,x,S_c,m,S_m\right) = \left(\sigma_N(S_p),\right.
90 % \left.\mathcal{F}(i_N(S_p),x,i_P(S_c),m),\sigma_P(S_c),G_{f_0}(m,S_m),\sigma_P(S_m)\right).
92 where $i_N$ and $\sigma_N$ are given in Section~\ref{sec:common-notations}.
94 Then $\CID$ can be described by the
95 iterations of the following discrete dynamical system:
96 $$X^0 \in \mathcal{X}_2 \text{ and } X^{k+1}=\mathcal{G}_{f_0}(X^k).$$
98 %\begin{definition}[Discret Dynamical System for SCISMM]
102 % X^0 \in \mathcal{X}_2 \\
103 % X^{k+1}=\mathcal{G}_{f_0}(X^k).%
110 %\subsection{Cardinality of $\mathcal{X}_2$}
113 % in~\cite{fgb11:ip} that:
115 % \begin{proposition}
116 % %The phase space $\mathcal{X}_2$ has, at least, the cardinality of the
118 % $\mathcal{X}_2$ has, at least, the cardinality of the continuum.
122 % Let $\varphi$ be the map defined as follow:
125 % \begin{array}{lcll}
126 % \varphi: & \mathcal{X}_1 & \longrightarrow & \mathcal{X}_2 \\
127 % & (S,x) & \longmapsto &(S,x,0,0,0)\\
131 % \noindent $\varphi$ is injective.
132 % So the cardinality of $\mathcal{X}_2$ is greater than or equal to the
133 % cardinality of $\mathcal{X}_1$. And consequently
134 % $\mathcal{X}_2$ has at least the cardinality of the continuum.
140 %This result is independent on the number of cells of the system~\cite{fgb11:ip}.
144 %\subsection{The Distance on $\mathcal{X}_2$}
146 A new distance has been defined on $\mathcal{X}_2$ as follow:
147 %\begin{definition}[Distance $d_2$ on $\mathcal{X}_2$]
148 $\forall X,\check{X} \in \mathcal{X}_2,$ if
149 $X =(S_p,x,S_c,m,S_m)$ and
150 $\check{X} = (\check{S_p},\check{x},\check{S_c},\check{m}, \check{S_m}),$ then:
152 $$d_{\mathds{B}^{\mathsf{N}}}(x,\check{x})+d_{\mathds{B}^{\mathsf{P}}}(m,\check{m})
153 + d_{\mathbb{S}_N}(S_p,\check{S_p})+d_{\mathbb{S}_P}(S_c,\check{S_c}) +
154 d_{\mathbb{S}_P}(S_m,\check{S_m}),$$
159 % d_2(X,\check{X}) & = &
160 % d_{\mathds{B}^{\mathsf{N}}}(x,\check{x})+d_{\mathds{B}^{\mathsf{P}}}(m,\check{m})\\
162 % d_{\mathbb{S}_N}(S_p,\check{S_p})+d_{\mathbb{S}_P}(S_c,\check{S_c})\\
163 % & + &d_{\mathbb{S}_P}(S_m,\check{S_m}),\\
167 % $d_{\mathds{B}^{\mathsf{N}}}$, $d_{\mathds{B}^{\mathsf{P}}}$,
168 % $d_{\mathbb{S}_N}$, and $d_{\mathbb{S}_P}$
169 % are the same distances than in
170 %Definition~\ref{def:distance-on-X1}.
172 % are the two distances defined by:
174 $\displaystyle{d_{\mathds{B}^{\mathsf{N}}}}$ and
175 $\displaystyle{d_{\mathds{S}^{\mathsf{N}}}}$ are the two distances defined in
176 Section~\ref{sec:common-notations}.
184 %\subsection{Devaney's topological chaos of $\mathcal{CIS}_2$}
185 %\subsection{Topological security and stego-security of $\mathcal{CIS}_2$}
187 %To demonstrate that \CID is another example of topological chaos in the
188 %sense of Devaney, it has been firstly
189 We have then established
192 $\mathcal{G}_{f_0}$ is continuous on $(\mathcal{X}_2,d_2)$. %~\cite{fgb11:ip}.
194 %$\mathcal{G}_{f_0}$ is a continuous function on $(\mathcal{X}_2,d_2)$.
197 Using these materials, the security study of
198 \CID has been initiated in~\cite{fgb11:ip}.
201 % We use the sequential continuity.
203 % Let $((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)_{n\in \mathds{N}}$ be a sequence of the
204 % phase space $\mathcal{X}_2$, which converges to $(S_p,x,S_c,m,S_m)$. We will prove
205 % that $\left( \mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)\right) _{n\in
206 % \mathds{N}}$ converges to $\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$. Let us recall
207 % that for all $n$, $(S_p)^n$, $(S_c)^n$ and $(S_m)^n$ are strategies, thus we
208 % consider a sequence of strategies (\emph{i.e.}, a sequence of sequences).
211 % As $d_2(((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n),(S_p,x,S_c,m,S_m))$ converges to 0,
213 % $d_{\mathds{B}^{\mathsf{N}}}(x^n,x)$, $d_{\mathds{B}^{\mathsf{P}}}(m^n,m)$,
214 % $d_{\mathbb{S}_N}((S_p)^n,S_p)$, $d_{\mathbb{S}_P}((S_c)^n,S_c)$, and
215 % $d_{\mathbb{S}_P}((S_m)^n,S_m)$ converges to 0. But
216 % $d_{\mathds{B}^{\mathsf{N}}}(x^n,x)$ and $d_{\mathds{B}^{\mathsf{P}}}(m^n,m)$
217 % are integers, so $\exists n_{0}\in \mathds{N}, \forall
219 % d_{\mathds{B}^{\mathsf{N}}}(x^n,x)=0$ and $\exists n_{1}\in \mathds{N},
220 % \forall n \geqslant n_1, d_{\mathds{B}^{\mathsf{P}}}(m^n,m)=0$.
222 % Let $n_3=Max(n_0,n_1)$.
223 % In other words, there exists a threshold $n_{3}\in \mathds{N}$ after which no
224 % cell will change its state:
225 % $\exists n_{3}\in \mathds{N},n\geqslant n_{3}\Longrightarrow (x^n = x) \wedge
228 % In addition, $d_{\mathbb{S}_N}((S_p)^n,S_p)\longrightarrow 0$,
229 % $d_{\mathbb{S}_P}((S_c)^n,S_c)\longrightarrow 0$, and
230 % $d_{\mathbb{S}_P}((S_m)^n,S_m)\longrightarrow 0$, so $\exists n_4,n_5,n_6\in
233 % \item $\forall n \geqslant n_4, d_{\mathbb{S}_N}((S_p)^n,S_p)<10^{-1}$,
234 % \item $\forall n \geqslant n_5, d_{\mathbb{S}_P}((S_c)^n,S_c)<10^{-1}$,
235 % \item $\forall n \geqslant n_6, d_{\mathbb{S}_P}((S_m)^n,S_m)<10^{-1}$.
238 % Let $n_7=Max(n_4,n_5,n_6)$. For
239 % $n\geqslant n_7$, all the strategies $(S_p)^n$, $(S_c)^n$, and $(S_m)^n$ have the same
240 % first term, which are respectively $(S_p)_0$,$(S_c)_0$ and $(S_m)_0$ :$\forall n\geqslant n_7,$
241 % $$((S_p)_0^n={(S_p)}_0)\wedge
242 % ((S_c)_0^n={(S_c)}_0)\wedge ((S_m)_0^n={(S_m)}_0).
245 % Let $n_8=Max(n_3,n_7)$.
246 % After the $n_8-$th term, states of $x^n$ and $x$ on the one hand, and $m^n$ and $m$ on the other hand, are
247 % identical. Additionally, strategies $(S_p)^n$ and $S_p$, $(S_c)^n$ and $S_c$, and $(S_m)^n$
248 % and $S_m$ start with the same first term.
250 % Consequently, states of
251 % $\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)$ and $\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$ are equal,
252 % so, after the $(n_8)^{th}$ term, the distance $d_2$ between these two
253 % points is strictly smaller than $3.10^{-1}$, so strictly smaller than 1.
255 % We now prove that the distance between $\left(
256 % \mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)\right) $ and $\left(
257 % \mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)\right) $ is convergent to 0.
258 % Let $\varepsilon >0$.
261 % \item If $\varepsilon \geqslant 1$, we have seen that distance
262 % between $\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)$ and
263 % $\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$ is
264 % strictly less than 1 after the $(n_8)^{th}$ term (same state).
267 % \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
268 % \frac{\varepsilon}{3} \geqslant 10^{-(k+1)}$. As
269 % $d_{\mathbb{S}_N}((S_p)^n,S_p)$, $d_{\mathbb{S}_P}((S_c)^n,S_c)$ and
270 % $d_{\mathbb{S}_P}((S_m)^n,S_m)$ converges to 0, we have:
272 % \item $\exists n_9\in \mathds{N},\forall n\geqslant
273 % n_9,d_{\mathbb{S}_N}((S_p)^n,S_p)<10^{-(k+2)}$,
274 % \item $\exists n_{10}\in \mathds{N},\forall n\geqslant
275 % n_{10},d_{\mathbb{S}_P}((S_c)^n,S_c)<10^{-(k+2)}$,
276 % \item $\exists n_{11}\in \mathds{N},\forall n\geqslant
277 % n_{11},d_{\mathbb{S}_P}((S_m)^n,S_m)<10^{-(k+2)}$.
280 % Let $n_{12}=Max(n_9,n_{10},n_{11})$
281 % thus after $n_{12}$, the $k+2$ first terms of $(S_p)^n$ and $S_p$, $(S_c)^n$ and
282 % $S_c$, and $(S_m)^n$ and $S_m$, are equal.
286 % \noindent As a consequence, the $k+1$ first entries of the strategies of
287 % $\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n)$ and $
288 % \mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)$ are the same
289 % (due to the shift of strategies) and following the definition of
290 % $d_{\mathbb{S}_N}$ and $d_{\mathbb{S}_P}$:
291 % $$d_2\left(\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n);\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)\right)$$
293 % $$d_{\mathbb{S}_N}((S_p)^n,S_p) + d_{\mathbb{S}_P}((S_c)^n,S_c) +
294 % d_{\mathbb{S}_P}((S_m)^n,S_m)$$
295 % which is smaller than $3.10^{-(k+1)} \leqslant 3.\frac{\varepsilon}{3} =\varepsilon$.
297 % Let $N_{0}=max(n_{8},n_{12})$. We can claim that
299 % \forall \varepsilon >0,\exists N_{0}\in \mathds{N},\forall n\geqslant N_{0},
302 % d_2\left(\mathcal{G}_{f_0}((S_p)^n,x^n,(S_c)^n,m^n,(S_m)^n);\mathcal{G}_{f_0}(S_p,x,S_c,m,S_m)\right)
303 % \leqslant \varepsilon .
305 % $\mathcal{G}_{f_0}$ is consequently continuous on $(\mathcal{X}_2,d_2)$.
308 % \subsection{$\mathcal{CIS}_2$ is Chaotic}
310 \subsection{Known Security Related Resultson \CID}
313 %%%% Then it has been proven% in~\cite{fgb11:ip}
316 that $(\mathcal{X}_2,\mathcal{G}_{f_0})$ is topologically \textbf{transitive},
317 \textbf{regular}, and has \textbf{sensitive dependence on initial conditions}.
318 Then we have the result:
320 \begin{theorem}%[$\mathcal{G}_{f_0}$ is a chaotic map]
321 \label{theo:topo-secure-cis2}
322 $\mathcal{G}_{f_0}$ is a chaotic map on $(\mathcal{X}_2,d_2)$ in the sense of
323 Devaney. Consequently the scheme \CID is topologically secure.
326 % So the topological security is established:
328 % \begin{theorem}%[Chaos-security of $\mathcal{CIS}_2$]
329 % \label{theo:cis2-chaosecurity}
333 Let us finally recall the following theorem about the security of \CID, which has been established too
337 \label{theorem:stego-secu-cis2}
338 \CID is stego-secure.
341 % In previous works~\cite{arxive:lyapunov-CIS-2}, it has been also mathematically
342 % studied and evaluated the lyapunov exponent of \CID.
343 % Consider a dynamical system with an infinitesimal error on the initial condition
344 % $x_0$ . When the Lyapunov exponent is positive, this error will increase
345 % exponentially (situation of topological chaos), whereas it will decrease if
346 % $\lambda (x_0) \leq 0$.
350 % $\forall x^0 \in \mathcal{L}$, the Lyapunov exponent of \CID having
351 % $x^0$ for initial condition is equal to $\lambda(x^0) = \ln (NP^2)>0$.
353 % %\subsection{New Security Properties}
355 In the following subsection, one other security-related
356 property concerning the watermarking scheme \CID will be established. It is a
357 qualitative property called strong transitivity.
359 % \subsection{Constant of Sensitivity
360 % Evaluation}\label{sec:quantitative-properties-ci2}
362 % In this section, we study and evaluate one of the quantitative properties
363 % of the topological-security of the steganographic process \CID: the constant of
366 % \begin{proposition}%[Constant of sensitivity of $ \mathcal{G}_{f_0}$]
367 % \label{prop:sensitivity-constant-evaluation}
369 % $(\mathcal{X}_2,\mathcal{G}_{f_0})$ has sensitive dependence on initial
370 % conditions, and its constant of sensitivity $\delta$ is equal to $\mathsf{N-1}$.
374 % Let us define $\mathcal{X}:\mathcal{X}_2\rightarrow \mathbb{B}^{\mathsf{N}},$
375 % such that $$\mathcal{X}(S_p,x,S_c,m,S_m)=x$$ and
376 % $\mathcal{M}:\mathcal{X}_2\rightarrow \mathbb{B}^{\mathsf{P}},$ such that
377 % $\mathcal{M}(S_p,x,S_c,m,S_m)=m$.
379 % Let $\check{X}=(\check{S_p},\check{x},\check{S_c},\check{m}, \check{S_m})\in
380 % \mathcal{X}_2$ and $\varepsilon > 0$. We are looking for
381 % $\widetilde{X}=(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m},\widetilde{S_m})$
382 % in $\mathcal{X}_2$ such that $d_2\left(\check{X},\widetilde{X} \right) \leq
383 % \varepsilon$ and $\exists n_0 \in \mathds{N},
384 % d_2\left(\mathcal{G}_{f_0}^{n_0}(\check{X}),\mathcal{G}_{f_0}^{n_0}(\widetilde{X})
386 % Let $k_{0}(\varepsilon)=\lfloor - \log _{10}(\frac{\varepsilon}{3})\rfloor +1$,
387 % and consider the set:
388 % $$\mathcal{S}_{\check{S_p},\check{S_c},\check{S_m}, k_0} =\left\{ S
389 % \in \mathbb{S}_N \times \mathbb{S}_P \times \mathbb{S}_P/ ((S_p)^k= \right.$$
390 % $$\left.(\check{S_p})^k) \wedge ((S_c)^k =(\check{S_c})^k)) \wedge
391 % ((S_m)^k=(\check{S_m})^k)), \forall k \leqslant k_0(\varepsilon) \right\}.$$
393 % $\forall (S_p,S_c,S_m) \in
394 % \mathcal{S}_{\check{S_p},\check{S_c},\check{S_m},k_0},$
395 % $$d_2((S_p,\check{x},S_c,\check{m},S_m);(\check{S_p},\check{x},\check{S_c},\check{m},
396 % \check{S_m})) < 3.\frac{\varepsilon}{3}=\varepsilon.$$
398 % Let $\mathcal{J} =\left\{i\in
399 % \llbracket0,\mathsf{N-1}\rrbracket/
400 % \mathcal{X}\left(\mathcal{G}_{f_0}^{k_{0}}(\check{X})\right)_{i} \neq
401 % \mathcal{X}\left(\mathcal{G}_{f_0}^{k_{0}+N}(\check{X})\right)_{i}\right\}$ the
402 % set of the indexes of cells of the second component different between the two
403 % states $\mathcal{G}_{f_0}^{k_{0}}(\check{X})$ and
404 % $\mathcal{G}_{f_0}^{k_{0}+\mathsf{N}}(\check{X})$.
406 % Let $\lambda = card(\mathcal{J})$ be the number of differences.
409 % \item If $\lambda = \mathsf{N}$, then the point
410 % $\widetilde{X}=(\widetilde{S_p},\widetilde{x},\widetilde{S_c},\widetilde{m},\widetilde{S_m})$
411 % defined by: \begin{enumerate}
412 % \item $\widetilde{x}$ = $\check{x}$ and $\widetilde{m}$ = $\check{m}$ in
413 % order to have the same second and fourth projections that $\check{X}$,
414 % and thus have a possibility to be at a distance inferior to 1 of
416 % \item $\forall k \leqslant k_0(\varepsilon), (S_p^\ast)^k=
417 % (\check{S_p})^k$, $(S_c^\ast)^k= (\check{S_c})^k$, and
418 % $(S_m^\ast)^k= (\check{S_m})^k$ in order to be $\varepsilon$-close to
420 % \item Let us now explain how to construct the three strategies $S_p^\ast$,
421 % $S_c^\ast$, and $S_m^\ast$. It is done by replacing
422 % $\mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_q$, $\forall q \in \llbracket0;\mathsf{N-1}\rrbracket$ with $(\lambda = \mathsf{N})$ in order to
423 % have a second projection $(x)$ whose cells are all different:\newline
424 % First of all, we must replace
425 % $\mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_0$ (with $q=0$):
427 % \item If $\exists \lambda_0 \in \llbracket0;\mathsf{P-1}\rrbracket /
428 % \mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_q \neq
429 % \check{m}_{\lambda_0}$, then we can choose $(S_p^\ast)^{k_0+1}=q$, $(S_c^\ast)^{k_0+1}=\lambda_0$,
430 % $(S_m^\ast)^{k_0+1}=\lambda_0$, and so $I_q$ will be equal to $1$.
431 % \item If such a $\lambda_0$ does not exist, we choose:\newline
432 % $(S_p^\ast)^{k_0+1}=q$, $(S_c^\ast)^{k_0+1}=0$,
433 % $(S_m^\ast)^{k_0+1}=0$,\newline $(S_p^\ast)^{k_0+2}=q$,
434 % $(S_c^\ast)^{k_0+2}=0$, $(S_m^\ast)^{k_0+2}=0$ \newline and so let us notice
437 % All of the $\mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_q$ are replaced similarly.
438 % The other terms of $S_p^\ast$, $S_c^\ast$, and $S_m^\ast$ are constructed
439 % identically, and the values of $I_q$ are defined on the same way.\newline
441 % $\gamma = \sum_{q=0}^{\mathsf{N-1}}I_q$ with $\lambda= \mathsf{N}$. As $\forall q \in
442 % \llbracket0;\mathsf{N-1}\rrbracket, I_q \geq 1$ we can claim that $\gamma \geq
443 % \mathsf{N}$, so $\gamma >
447 % % \item $(S_p^\ast)^{k}=(S_p^\ast)^{j}$, $(S_c^\ast)^{k}=(S_c^\ast)^{j}$
448 % % and $(S_m^\ast)^{k}=(S_m^\ast)^{j}$ where $j\leqslant k_{0}+\gamma$
449 % % is satisfying $j\equiv k~[\text{mod } (k_{0}+\gamma)]$, if
450 % % $k>k_{0}+\gamma$.
452 % \item $\forall k > k_0 + \gamma, (S_p^\ast)^{k}=0$,
453 % $(S_c^\ast)^{k}=0$ and $(S_m^\ast)^{k}=0$ in order to completely finish defining
454 % $S_p^\ast$, $S_c^\ast$, and $S_m^\ast$.
460 % $X^\ast =(S_p^\ast,\check{x},S_c^\ast,\check{m},S_m^\ast)$.\newline
462 % $\mathcal{G}_{f_0}^{k_{0}+\gamma}(X^\ast)=(S_p^\ast,\overline{(\check{x})},S_c^\ast,m,S_m^\ast)$\newline
463 % (where $\overline{(\check{x})}$ is the boolean negation of $\check{x}$), satisfies\newline
464 % $d_2(X^\ast;\check{X}) < \varepsilon$ (ie. $X^\ast$ is close to
465 % $\check{X}$), and $\forall i \in \llbracket0;\mathsf{N-1}\rrbracket,
466 % \mathcal{X}\left(\mathcal{G}_{f_0}^{k_{0}+\gamma}(X^\ast)\right)_{i} \neq
467 % \mathcal{X}\left(\mathcal{G}_{f_0}^{k_{0}+\gamma}(\check{X})\right)_{i}$, (ie.
468 % the iterate $k_0+\gamma$ of $X^\ast$ is away from the iterate $k_0+\gamma$ of
469 % $\check{X}$ with a distance greater than $\mathsf{N}$), and we have the result.
471 % % Let $\mathcal{K} =\left\{ i \in \llbracket0;\mathsf{P-1}\rrbracket / m_i \neq
472 % % \mathcal{M}(X_{B})_{i}, \text{ where }\right.$\newline
473 % % $\left.(S_p^\ast,x_B,S_c^\ast,m,S_m^\ast)=\mathcal{G}_{f_0}^{k_{0}+\gamma}((S_p^\ast,x_A,S_c^\ast,m_A,S_m^\ast))\right\},$\newline
474 % % $\mu = card(\mathcal{K})$ and $r_0 <r_1 < ... < r_{\mu-1}$ the elements of $
478 % \item On the contrary, if $\lambda < \mathsf{N}$, let $j_1 < ... <
479 % j_{\lambda}$ be the elements of $\mathcal{J}$, and $j_0 \not\in
480 % \mathcal{J}$. Let us here build $\widetilde{X}$ and the three strategies
481 % $\widetilde{S_p}$, $\widetilde{S_c}$, $\widetilde{S_m}$ as follows.
483 % \item $\widetilde{x}$ = $\check{x}$ and $\widetilde{m}$ = $\check{m}$ in
484 % order to have the same second and fourth projections that $\check{X}$,
485 % and thus have a possibility to be at a distance inferior to 1 of
487 % \item $\forall k \leqslant k_0(\varepsilon), (\widetilde{S_p})^k=
488 % (\check{S_p})^k$, $(\widetilde{S_c})^k= (\check{S_c})^k$, and
489 % $(\widetilde{S_m})^k= (\check{S_m})^k$ in order to be $\varepsilon$-close
491 % \item Let us now explain how to construct the three strategies $S_p^\ast$,
492 % $S_c^\ast$, and $S_m^\ast$. It is done by replacing
493 % $\mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_q$, $\forall q \in \llbracket0;\mathsf{N-1}\rrbracket$ with $(\lambda = \mathsf{N})$ in order to
494 % have a second projection $(x)$ whose cells are all different:\newline
495 % First of all, we must replace
496 % $\mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_0$ (with $q=0$):
498 % \item If $\exists \lambda_0 \in \llbracket0;\mathsf{P-1}\rrbracket /
499 % \mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_q \neq
500 % \check{m}_{\lambda_0}$, then we can choose $(S_p^\ast)^{k_0+1}=q$, $(S_c^\ast)^{k_0+1}=\lambda_0$,
501 % $(S_m^\ast)^{k_0+1}=\lambda_0$, and so $I_q$ will be equal to $1$.
502 % \item If such a $\lambda_0$ does not exist, we choose:\newline
503 % $(S_p^\ast)^{k_0+1}=q$, $(S_c^\ast)^{k_0+1}=0$,
504 % $(S_m^\ast)^{k_0+1}=0$,\newline $(S_p^\ast)^{k_0+2}=q$,
505 % $(S_c^\ast)^{k_0+2}=0$, $(S_m^\ast)^{k_0+2}=0$ \newline and so let us notice
508 % All of the $\mathcal{X}(\mathcal{G}_{f_0}^{k_{0}}(\check{S}))_q$ are replaced similarly.
509 % The other terms of $S_p^\ast$, $S_c^\ast$, and $S_m^\ast$ are constructed
510 % identically, and the values of $I_q$ are defined on the same way.\newline
512 % $\gamma = \sum_{q=0}^{\mathsf{N-1}}I_q$ with $\lambda= \mathsf{N}$. As $\forall q \in
513 % \llbracket0;\mathsf{N-1}\rrbracket, I_q \geq 1$ we can claim that $\gamma \geq
514 % \mathsf{N}$, so $\gamma >
517 % \item $\widetilde{S_p}^k=(S_p^\ast)^k$, $\widetilde{S_c}^k=(S_c^\ast)^k$, and
518 % $\widetilde{S_m}^k=(S_m^\ast)^k$, if $k \leqslant k_0 + \gamma.$
519 % \item Let us now explain how to replace $\mathcal{M}(X_{B})_{r_q}, \forall q
520 % \in \llbracket0;\mathsf{\mu-1}\rrbracket$:
522 % First of all, we must replace $\mathcal{M}(X_{B})_{r_0}$:
524 % \item If $\exists \mu_0 \in \llbracket0;\mathsf{N-1}\rrbracket /
525 % \mathcal{M}(X_{B})_{r_0}=(x_B)_{\mu_0}$, then we can choose
526 % $\widetilde{S_p}^{k_0+\gamma +1}=\mu_0$, $\widetilde{S_c}^{k_0+\gamma
527 % +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
528 % +1}=r_0$, and $J_{r_0}$ will be equal to $1$.
529 % \item If such a $\mu_0$ does not exist, we choose:
530 % $\widetilde{S_p}^{k_0+\gamma +1}=0$, $\widetilde{S_c}^{k_0+\gamma
531 % +1}=r_0$, $\widetilde{S_m}^{k_0+\gamma
533 % $\widetilde{S_p}^{k_0+\gamma +2}=0$, $\widetilde{S_c}^{k_0+\gamma
534 % +2}=r_0$, $\widetilde{S_m}^{k_0+\gamma
536 % $\widetilde{S_p}^{k_0+\gamma +3}=0$, $\widetilde{S_c}^{k_0+\gamma
537 % +3}=r_0$, $\widetilde{S_m}^{k_0+\gamma
538 % +3}=0$, and so let us notice $J_{r_0}=3$.\newline
540 % All the $\mathcal{M}(X_{B})_{r_q}$ are replaced similarly.
541 % The other terms of $\widetilde{S_p}$,
542 % $\widetilde{S_c}$, and $\widetilde{S_m}$ are constructed identically, and the
543 % values of $J_{r_q}$ are defined on the same way.\newline
544 % Let $\alpha = \sum_{q=0}^{\mu-1}J_{r_q}$.
546 % \item $\forall k \in \mathbb{N}^\ast, \widetilde{S_p}^{k_0+ \gamma + \alpha
547 % + k}=(S_p)_B^{k}$, $\widetilde{S_c}^{k_0+ \gamma + \alpha + k}=(S_c)_B^{k}$, and
548 % $\widetilde{S_m}^{k_0+ \gamma + \alpha + k}=(S_m)_B^{k}$.
553 % $\mathcal{G}_{f_0}^{k_{0}+\gamma+\alpha}(\widetilde{S_p},x_A,\widetilde{S_c},m_A,\widetilde{S_m})=X_B$,
554 % with $(\widetilde{S_p},\widetilde{S_c},\widetilde{S_m}) \in \mathcal{S}_{X_{A},
556 % Then $\widetilde{X} = (\widetilde{S_p},x_A,\widetilde{S_c},m_A,\widetilde{S_m})
557 % \in \mathcal{X}_2$ is such that $\widetilde{X} \in \mathcal{B}_A$ and
558 % $\mathcal{G}_{f_0}^{k_0+\gamma+\alpha}( \widetilde{X}) \in \mathcal{B}_B$.
559 % Finally we have proven the result.
562 % %\subsubsection{Compacity of the Topological Space for \CID}
565 % \subsection{Compacity and Strong Transitivity
566 % Study}\label{sec:qualitative-properties-ci2}
568 % In this section is introduced a new topological notion called
569 % compacity~\cite{Schwartz80}. This concept will then be used to establish the
570 % strong transitivity, a new qualitative property of the topological-security of
571 % watermarking process \CID.
573 % \subsubsection{Recall About Topological Compacity}
574 % In order to give the topological compacity definition, it is necessary to give
575 % two first other preliminary definitions:
578 % A Hausdorff space is a topological space in which any two distinct points
579 % always admit disjoint neighborhoods.
584 % All metric spaces are Hausdorff spaces.
588 % Let X be a topological space, then a cover $C$ of $X$ is a collection of subsets
589 % $(U_i)_i \in I$ of X whose union is the whole space X. In this case we say that
590 % C covers X, or that the sets $(U_i)_i \in I$ cover X.
591 % A subcover of C is a subset of C that still covers X.
592 % C is said to be an open cover if each of its members is an open set.
597 % A Hausdorff topological space is called compact if each of its open covers
598 % has a finite subcover.
603 % The sequential characterization of the compacity for
604 % metric spaces can now be recalled. This characterization will then be used
605 % in order to prove the strong transitivity of \CID:
606 % \begin{proposition}
607 % A metric space $(\mathcal{X}, d)$ is compact if and only if every infinite
608 % sequence of $\mathcal{X}$ has a convergent subsequence.
611 % \subsubsection{Compacity of $\mathcal{X}_2$}
613 % So, using the previous sequential characterization of compacity, it will now be
617 % \label{th:compacity-X2}
618 % The metric space $(\mathcal{X}_2, d_2)$ is compact.
623 % The following proof is a constructive proof. It will be explain here how it is
624 % always possible to construct a convergent subsequence for any given sequence.
626 % Let $(Y^n)_n=((S_p)^n,x^n,(S_c),m^n,(S_m)^n))_{n} \in \mathcal{X}_2^\mathds{N}$
627 % a sequence of points of $\mathcal{X_2}$.
629 % \item Construction of the first term of the sequential
632 % \item Construction of $I_1$ and $n_x$:\newline
634 % $\mathds{B}^\mathsf{N}$ is a finite set and as $\forall n \in \mathds{N}, x^n
635 % \in \mathds{B}^\mathsf{N}$, $\exists \lambda_x \in \mathds{B}^\mathsf{N}$ such
636 % that $\lambda_x$ appears an infinite number of times in the second projection
637 % in sequence $(Y^n)_n$. Let $n_x$ be the first index where this value
638 % $\lambda_x$ appears. Let $I_1$ denote the set of terms $Y^n$ of the sequence $(Y^n)_n$ such that $x^n=x^{n_x}$. We note $I_1=\left\{ Y^n ~\big/~ n \in \mathds{N} \wedge
639 % x^n=x^{n_x} \right\}$.\newline
640 % \item Construction of $I_2$ and $n_m$:\newline
641 % As $I_1$ is an infinite
642 % set, $\mathds{B}^\mathsf{P}$ is a finite set, and $\forall n \in
643 % \mathds{N}, m^n \in \mathds{B}^\mathsf{P}$, $\exists \lambda_m \in
644 % \mathds{B}^\mathsf{P}$ such that $\lambda_m$ appears an infinite number of times
645 % in the second projection in sequence $(Y^n)_n$. Let $n_m$ be the first index
646 % where this value $\lambda_m$ appears. We note $I_2=\left\{ Y^n \in I_1 ~\big/~ n
647 % \in \mathds{N} \wedge x^n=x^{n_m} \wedge
648 % m^n=m^{n_m} \right\}$.\newline
649 % \item Construction of $I_3$ and $p_0$:\newline
650 % The first terms $\left((S_p)^n\right)^0$
651 % of strategies $(S_p)^n$ of tuples of $I_2$
652 % belong to $\llbracket 1, \mathsf{N} \rrbracket$, and $I_2$ is an infinite set. So,
653 % $\exists k_p \in \llbracket 1, \mathsf{N} \rrbracket$
654 % for which there is an infinite number of strategies of $I_2$ whose first
655 % term is equal to $k_p$. Let $p_0$ denote the the smallest integer $n$ such that
656 % $Y^n \in I_2$ and $\left( (S_p)^n \right)^0 = k_p$.
657 % Let $I_3 = \left\{Y^n \in I_2 ~\big/~ \right.$
658 % $n \in \mathds{N} \wedge x^n=x^{p_0} \wedge m^n=m^{p_0} \wedge
659 % \left( (S_p)^n \right)^0$
660 % $\left.= \left( (S_p)^{p_0} \right)^0
662 % \item Construction of $I_4$ and $c_0$, $I_5$ and $m_0$:\newline
663 % In the same way as for the previous item, and for similar reasons, it can be
664 % constructed the two sets $I_4$ and $I_5= \left\{Y^n \in I_4 ~\big/~ \right.$
665 % $n \in \mathds{N} \wedge x^n=x^{m_0} \wedge m^n=m^{m_0} \wedge
666 % \left( (S_p)^n \right)^0$
667 % $= \left( (S_p)^{m_0} \right)^0 \wedge \left( (S_c)^n \right)^0=\left(
668 % (S_c)^{m_0} \right)^0 $ $\left. \wedge \left( (S_m)^n \right)^0=\left(
669 % (S_m)^{m_0} \right)^0 \right\}$
672 % \item The construction of all the others
673 % values of the sequential limit and all the other $m_k$ values used in
674 % the subsequence follows exactly the same pattern as
679 % \noindent Let $l = \left(\left(\left((S_p)^{m_k}\right)^k,
680 % x^{p_0},\left((S_c)^{m_k}\right)^k,m^{p_0},\left((S_m)^{m_k}\right)^k
681 % \right)_{k \in \mathds{N}}\right)$,\newline then the subsequence
682 % $\left((S_p)^{m_k},x^{m_k},(S_c)^{m_k},m^{m_k},(S_m)^{m_k}\right)$
686 % \subsubsection{Strong transitivity of \CID}
688 % Let us now give the definition of strong transitivity and recall the
689 % following proposition coming from works of Enrico Formenti~\cite{Formenti1998}:
692 % \label{def:strong-transitivity}
693 % A discreet dynamical system $(\mathcal{X},f)$ is \emph{strongly transitive} if
694 % and only if $$\forall x,y \in \mathcal{X}, \forall r>0, \exists z \in B(x,r),
695 % \exists n \in \mathbb{N}, f^{(n)}(z)=y.$$
700 % In other words, for any pair $(x,y)$, there exists a point as
701 % close as we want to $x$ whose one iterate is equal to $y$.
703 % We can recall here the following result from~\cite{Formenti1998}:
705 % \begin{proposition}
706 % \label{prop:equivalence-transitivity-strong-transitivity}
707 % In a compact metric space, transitivity and strong transitivity are equivalent.
710 % So according to previous
711 % proposition~\ref{prop:equivalence-transitivity-strong-transitivity}, and the
712 % two theorems~\ref{th:compacity-X2}, and~\ref{theo:topo-secure-cis2}, we have the
719 % \label{theo:strong-transitivity-ci2}
720 % $\mathcal{G}_{f_0}$ is strongly transitive on $(\mathcal{X}_2,d_2)$.
723 % As a consequence, \CID also strongly transitive.
726 % %\subsection{Consequences in Attack
727 % %Frameworks}\label{sec:qualitative-properties-ci2}
729 % This new qualitative property of \CID allow thus \CID to better
730 % resists attacks in KOA, KMA,CMA and WOA setups as defined in~\cite{Cayre2008} in
731 % a watermarking context.