]> AND Private Git Repository - JournalMultiPeriods.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
authorali <ali@ali.lan>
Thu, 27 Aug 2015 09:26:28 +0000 (11:26 +0200)
committerali <ali@ali.lan>
Thu, 27 Aug 2015 09:26:28 +0000 (11:26 +0200)
article.tex
fig21.pdf [new file with mode: 0644]
fig22.pdf [new file with mode: 0644]
fig24.pdf [new file with mode: 0644]
fig25.pdf [new file with mode: 0644]
fig26.pdf [new file with mode: 0644]
principles13.pdf [new file with mode: 0644]

index 777d52e22f0bc06cb8ece824c9ebd3e182fced18..ca8c2c395601cf159cd56cceff5402d20b38813b 100644 (file)
@@ -538,10 +538,64 @@ Zhou~\cite{Zhang05} proved that if  the transmission range fulfills the previous
 hypothesis, a complete coverage of  a convex area implies connectivity among the
 active nodes.
 
-Instead  of working  with a  continuous coverage  area, we  make it  discrete by
-considering for each sensor a set of points called primary points. Consequently,
-we assume  that the sensing disk  defined by a sensor  is covered if  all of its
-primary points are covered. The choice of number and locations of primary points is the subject of another study not presented here.
+%Instead  of working  with a  continuous coverage  area, we  make it  discrete by considering for each sensor a set of points called primary points. Consequently, we assume  that the sensing disk  defined by a sensor  is covered if  all of its primary points are covered. The choice of number and locations of primary points is the subject of another study not presented here.
+
+
+\indent Instead of working with the coverage area, we consider for each sensor a set of points called primary points~\cite{idrees2014coverage}. We also assume that the sensing disk defined by a sensor is covered if all the primary points of this sensor are covered. By  knowing the  position (point  center: ($p_x,p_y$))  of  a wireless sensor node  and it's sensing range $R_s$,  we calculate the primary  points directly based on the proposed model. We  use these primary points (that can be increased or decreased if necessary)  as references to ensure that the monitored  region  of interest  is  covered by the selected  set  of sensors, instead of using all the points in the area. 
+We can  calculate  the positions of the selected primary
+points in the circle disk of the sensing range of a wireless sensor
+node (see Figure~\ref{fig1}) as follows:\\
+Assuming that the point center of a wireless sensor node is located at $(p_x,p_y)$, we can define up to 25 primary points $X_1$ to $X_{25}$.\\
+%$(p_x,p_y)$ = point center of wireless sensor node\\  
+$X_1=(p_x,p_y)$ \\ 
+$X_2=( p_x + R_s * (1), p_y + R_s * (0) )$\\           
+$X_3=( p_x + R_s * (-1), p_y + R_s * (0)) $\\
+$X_4=( p_x + R_s * (0), p_y + R_s * (1) )$\\
+$X_5=( p_x + R_s * (0), p_y + R_s * (-1 )) $\\
+$X_6= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\
+$X_7=( p_x + R_s *  (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\
+$X_8=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_9=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{10}=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{11}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{12}=( p_x + R_s * (0), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{13}=( p_x + R_s * (0), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{14}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{15}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{16}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{17}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{18}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (0) $\\
+$X_{19}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (0) $\\
+$X_{20}=( p_x + R_s * (0), p_y + R_s * (\frac{1}{2})) $\\
+$X_{21}=( p_x + R_s * (0), p_y + R_s * (-\frac{1}{2})) $\\
+$X_{22}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{23}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{24}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $\\
+$X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
+
+
+\begin{figure} %[h!]
+\centering
+ \begin{multicols}{2}
+\centering
+\includegraphics[scale=0.28]{fig21.pdf}\\~ (a)
+\includegraphics[scale=0.28]{principles13.pdf}\\~(c) 
+\hfill \hfill
+\includegraphics[scale=0.28]{fig25.pdf}\\~(e)
+\includegraphics[scale=0.28]{fig22.pdf}\\~(b)
+\hfill \hfill
+\includegraphics[scale=0.28]{fig24.pdf}\\~(d)
+\includegraphics[scale=0.28]{fig26.pdf}\\~(f)
+\end{multicols} 
+\caption{Wireless Sensor Node represented by (a) 5, (b) 9, (c) 13, (d) 17, (e) 21 and (f) 25 primary points respectively}
+\label{fig1}
+\end{figure}
+    
+
+
+
+
 
 %By  knowing the  position (point  center: ($p_x,p_y$))  of  a wireless
 %sensor node  and its $R_s$,  we calculate the primary  points directly
diff --git a/fig21.pdf b/fig21.pdf
new file mode 100644 (file)
index 0000000..1d32fcc
Binary files /dev/null and b/fig21.pdf differ
diff --git a/fig22.pdf b/fig22.pdf
new file mode 100644 (file)
index 0000000..7cc4a50
Binary files /dev/null and b/fig22.pdf differ
diff --git a/fig24.pdf b/fig24.pdf
new file mode 100644 (file)
index 0000000..d774bcd
Binary files /dev/null and b/fig24.pdf differ
diff --git a/fig25.pdf b/fig25.pdf
new file mode 100644 (file)
index 0000000..5e50035
Binary files /dev/null and b/fig25.pdf differ
diff --git a/fig26.pdf b/fig26.pdf
new file mode 100644 (file)
index 0000000..f369523
Binary files /dev/null and b/fig26.pdf differ
diff --git a/principles13.pdf b/principles13.pdf
new file mode 100644 (file)
index 0000000..9d30005
Binary files /dev/null and b/principles13.pdf differ