]> AND Private Git Repository - JournalMultiPeriods.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/JournalMultiPeriods
authorKarine Deschinkel <kdeschin@grappa.iut-bm.univ-fcomte.fr>
Thu, 27 Aug 2015 09:57:49 +0000 (11:57 +0200)
committerKarine Deschinkel <kdeschin@grappa.iut-bm.univ-fcomte.fr>
Thu, 27 Aug 2015 09:57:49 +0000 (11:57 +0200)
15 files changed:
R2/ASR.pdf [new file with mode: 0644]
R2/CR.pdf [new file with mode: 0644]
R2/EC50.pdf [new file with mode: 0644]
R2/EC95.pdf [new file with mode: 0644]
R2/LT50.pdf [new file with mode: 0644]
R2/LT95.pdf [new file with mode: 0644]
R2/SR.pdf [new file with mode: 0644]
R2/T.pdf [new file with mode: 0644]
article.tex
fig21.pdf [new file with mode: 0644]
fig22.pdf [new file with mode: 0644]
fig24.pdf [new file with mode: 0644]
fig25.pdf [new file with mode: 0644]
fig26.pdf [new file with mode: 0644]
principles13.pdf [new file with mode: 0644]

diff --git a/R2/ASR.pdf b/R2/ASR.pdf
new file mode 100644 (file)
index 0000000..4e1160a
Binary files /dev/null and b/R2/ASR.pdf differ
diff --git a/R2/CR.pdf b/R2/CR.pdf
new file mode 100644 (file)
index 0000000..dedc1e8
Binary files /dev/null and b/R2/CR.pdf differ
diff --git a/R2/EC50.pdf b/R2/EC50.pdf
new file mode 100644 (file)
index 0000000..281d3d7
Binary files /dev/null and b/R2/EC50.pdf differ
diff --git a/R2/EC95.pdf b/R2/EC95.pdf
new file mode 100644 (file)
index 0000000..a6ba510
Binary files /dev/null and b/R2/EC95.pdf differ
diff --git a/R2/LT50.pdf b/R2/LT50.pdf
new file mode 100644 (file)
index 0000000..4b1901a
Binary files /dev/null and b/R2/LT50.pdf differ
diff --git a/R2/LT95.pdf b/R2/LT95.pdf
new file mode 100644 (file)
index 0000000..63796ee
Binary files /dev/null and b/R2/LT95.pdf differ
diff --git a/R2/SR.pdf b/R2/SR.pdf
new file mode 100644 (file)
index 0000000..8b90364
Binary files /dev/null and b/R2/SR.pdf differ
diff --git a/R2/T.pdf b/R2/T.pdf
new file mode 100644 (file)
index 0000000..7ab1b00
Binary files /dev/null and b/R2/T.pdf differ
index 29e8cb96ab615ef20fe3933fdd716dcaa132fe3f..520140e6befa68f2f84fcc0d683e466c7a00e8e6 100644 (file)
@@ -538,10 +538,64 @@ Zhou~\cite{Zhang05} proved that if  the transmission range fulfills the previous
 hypothesis, a complete coverage of  a convex area implies connectivity among the
 active nodes.
 
-Instead  of working  with a  continuous coverage  area, we  make it  discrete by
-considering for each sensor a set of points called primary points. Consequently,
-we assume  that the sensing disk  defined by a sensor  is covered if  all of its
-primary points are covered. The choice of number and locations of primary points is the subject of another study not presented here.
+%Instead  of working  with a  continuous coverage  area, we  make it  discrete by considering for each sensor a set of points called primary points. Consequently, we assume  that the sensing disk  defined by a sensor  is covered if  all of its primary points are covered. The choice of number and locations of primary points is the subject of another study not presented here.
+
+
+\indent Instead of working with the coverage area, we consider for each sensor a set of points called primary points~\cite{idrees2014coverage}. We also assume that the sensing disk defined by a sensor is covered if all the primary points of this sensor are covered. By  knowing the  position (point  center: ($p_x,p_y$))  of  a wireless sensor node  and it's sensing range $R_s$,  we calculate the primary  points directly based on the proposed model. We  use these primary points (that can be increased or decreased if necessary)  as references to ensure that the monitored  region  of interest  is  covered by the selected  set  of sensors, instead of using all the points in the area. 
+We can  calculate  the positions of the selected primary
+points in the circle disk of the sensing range of a wireless sensor
+node (see Figure~\ref{fig1}) as follows:\\
+Assuming that the point center of a wireless sensor node is located at $(p_x,p_y)$, we can define up to 25 primary points $X_1$ to $X_{25}$.\\
+%$(p_x,p_y)$ = point center of wireless sensor node\\  
+$X_1=(p_x,p_y)$ \\ 
+$X_2=( p_x + R_s * (1), p_y + R_s * (0) )$\\           
+$X_3=( p_x + R_s * (-1), p_y + R_s * (0)) $\\
+$X_4=( p_x + R_s * (0), p_y + R_s * (1) )$\\
+$X_5=( p_x + R_s * (0), p_y + R_s * (-1 )) $\\
+$X_6= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\
+$X_7=( p_x + R_s *  (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\
+$X_8=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_9=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{10}=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{11}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{12}=( p_x + R_s * (0), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{13}=( p_x + R_s * (0), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{14}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{15}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{16}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{17}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{18}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (0) $\\
+$X_{19}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (0) $\\
+$X_{20}=( p_x + R_s * (0), p_y + R_s * (\frac{1}{2})) $\\
+$X_{21}=( p_x + R_s * (0), p_y + R_s * (-\frac{1}{2})) $\\
+$X_{22}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{23}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{24}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $\\
+$X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
+
+
+\begin{figure} %[h!]
+\centering
+ \begin{multicols}{2}
+\centering
+\includegraphics[scale=0.28]{fig21.pdf}\\~ (a)
+\includegraphics[scale=0.28]{principles13.pdf}\\~(c) 
+\hfill \hfill
+\includegraphics[scale=0.28]{fig25.pdf}\\~(e)
+\includegraphics[scale=0.28]{fig22.pdf}\\~(b)
+\hfill \hfill
+\includegraphics[scale=0.28]{fig24.pdf}\\~(d)
+\includegraphics[scale=0.28]{fig26.pdf}\\~(f)
+\end{multicols} 
+\caption{Wireless Sensor Node represented by (a) 5, (b) 9, (c) 13, (d) 17, (e) 21 and (f) 25 primary points respectively}
+\label{fig1}
+\end{figure}
+    
+
+
+
+
 
 %By  knowing the  position (point  center: ($p_x,p_y$))  of  a wireless
 %sensor node  and its $R_s$,  we calculate the primary  points directly
@@ -1267,6 +1321,117 @@ indicate the energy consumed by the whole network in round $t$.
 
 \end{enumerate}
 
+\subsection{Performance Analysis for Different Number of Primary Points}
+\label{ch4:sec:04:06}
+
+In this section, we study the performance of MuDiLCO-1 approach for different numbers of primary points. The objective of this comparison is to select the suitable primary point model to be used by a MuDiLCO protocol. In this comparison, MuDiLCO-1 protocol is used with five models, which are called Model-5 (it uses 5 primary points), Model-9, Model-13, Model-17, and Model-21. 
+
+
+%\begin{enumerate}[i)]
+
+%\item {{\bf Coverage Ratio}}
+\subsubsection{Coverage Ratio} 
+
+Figure~\ref{Figures/ch4/R2/CR} shows the average coverage ratio for 150 deployed nodes.  
+\parskip 0pt    
+\begin{figure}[h!]
+\centering
+ \includegraphics[scale=0.5] {R2/CR.pdf} 
+\caption{Coverage ratio for 150 deployed nodes}
+\label{Figures/ch4/R2/CR}
+\end{figure} 
+As can be seen in Figure~\ref{Figures/ch4/R2/CR}, at the beginning the models which use a larger number of primary points provide slightly better coverage ratios, but latter they are the worst. 
+%Moreover, when the number of periods increases, coverage ratio produced by Model-9, Model-13, Model-17, and Model-21 decreases in comparison with Model-5 due to a larger time computation for the decision process for larger number of primary points.
+Moreover, when the number of periods increases, coverage ratio produced by all models decrease, but Model-5 is the one with the slowest decrease due to a smaller time computation of decision process for a smaller number of primary points. 
+As shown in Figure ~\ref{Figures/ch4/R2/CR}, coverage ratio decreases when the number of periods increases due to dead nodes. Model-5 is slightly more efficient than other models, because it offers a good coverage ratio for a larger number of periods in comparison with other models.
+
+%\item {{\bf Active Sensors Ratio}}
+\subsubsection{Active Sensors Ratio} 
+
+Figure~\ref{Figures/ch4/R2/ASR} shows the average active nodes ratio for 150 deployed nodes.
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.5]{R2/ASR.pdf}  
+\caption{Active sensors ratio for 150 deployed nodes }
+\label{Figures/ch4/R2/ASR}
+\end{figure} 
+The results presented in Figure~\ref{Figures/ch4/R2/ASR} show the superiority of the proposed  Model-5, in comparison with the other models. The model with fewer number of primary points uses fewer active nodes than the other models. 
+According to the results presented in Figure~\ref{Figures/ch4/R2/CR}, we observe that Model-5 continues for a larger number of periods with a better coverage ratio compared with other models. The advantage of Model-5 is to use fewer number of active nodes for each period compared with Model-9, Model-13,  Model-17, and Model-21. This led to continuing for a larger number of periods and thus extending the network lifetime.
+
+
+%\item {{\bf Stopped simulation runs}}
+\subsubsection{Stopped simulation runs}
+
+Figure~\ref{Figures/ch4/R2/SR} illustrates the percentage of stopped simulation runs per period for 150 deployed nodes. 
+
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.5]{R2/SR.pdf} 
+\caption{Percentage of stopped simulation runs for 150 deployed nodes }
+\label{Figures/ch4/R2/SR}
+\end{figure} 
+
+When the number of primary points is increased, the percentage of the stopped simulation runs per period is increased. The reason behind the increase is the increasing number of dead sensors when the primary points increase. Model-5 is better than other models because it conserves more energy by turning on less sensors during the sensing phase and in the same time it preserves a good coverage for a larger number of periods in comparison with other models. Model~5 seems to be more suitable to be used in wireless sensor networks. \\
+
+
+%\item {{\bf Energy Consumption}}
+\subsubsection{Energy Consumption}
+
+In this experiment, we study the effect of increasing the primary points to represent the area of the sensor on the energy consumed by the wireless sensor network for different network densities.  Figures~\ref{Figures/ch4/R2/EC}(a) and~\ref{Figures/ch4/R2/EC}(b) illustrate the energy consumption for different network sizes for $Lifetime_{95}$ and $Lifetime_{50}$.
+
+\begin{figure}[h!]
+\centering
+ %\begin{multicols}{1}
+\centering
+\includegraphics[scale=0.5]{R2/EC95.pdf}\\~ ~ ~ ~ ~(a) \\
+%\vfill
+\includegraphics[scale=0.5]{R2/EC50.pdf}\\~ ~ ~ ~ ~(b)
+
+%\end{multicols} 
+\caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+\label{Figures/ch4/R2/EC}
+\end{figure}
+
+We see from the results presented in both figures that the energy consumed by the network for each period increases when the number of primary points increases. Indeed, the decision for the optimization process requires more time, which leads to consuming more energy during the listening mode. The results show that Model-5 is the most competitive from the energy consumption point of view and the coverage ratio point of view. The other models have a high energy consumption  due to the increase in the primary points. In fact, Model-5 is a good candidate to be used by wireless sensor network because it preserves a good coverage ratio with a suitable energy consumption in comparison with other models. 
+
+%\item {{\bf Execution Time}}
+\subsubsection{Execution Time}
+
+In this experiment, we study the impact of the increase in primary points on the execution time of DiLCO protocol. Figure~\ref{Figures/ch4/R2/T} gives the average execution times in seconds for the decision phase (solving of the optimization problem) during one period. The original execution time is computed as described in section \ref{et}. 
+
+\begin{figure}[h!]
+\centering
+\includegraphics[scale=0.5]{R2/T.pdf}  
+\caption{Execution Time (in seconds)}
+\label{Figures/ch4/R2/T}
+\end{figure} 
+
+They are given for the different primary point models and various numbers of sensors. We can see from Figure~\ref{Figures/ch4/R2/T}, that Model-5 has lower execution time in comparison with other models because it uses the smaller number of primary points to represent the area of the sensor.  Conversely, the other primary point models have presented  higher execution times.
+Moreover, Model-5 has more suitable execution times and coverage ratio that lead to continue for a larger number of period extending the network lifetime. We think that a good primary point model is one that balances between the coverage ratio and the number of periods during the lifetime of the network.
+
+%\item {{\bf Network Lifetime}}
+\subsubsection{Network Lifetime}
+
+Finally, we study the effect of increasing the primary points on the lifetime of the network. 
+%In Figure~\ref{Figures/ch4/R2/LT95} and in Figure~\ref{Figures/ch4/R2/LT50}, network lifetime, $Lifetime95$ and $Lifetime50$ respectively, are illustrated for different network sizes. 
+As highlighted by Figures~\ref{Figures/ch4/R2/LT}(a) and \ref{Figures/ch4/R2/LT}(b), the network lifetime obviously increases when the size of the network increases, with  Model-5 that leads to the larger lifetime improvement. 
+
+\begin{figure}[h!]
+\centering
+\centering
+\includegraphics[scale=0.5]{R2/LT95.pdf}\\~ ~ ~ ~ ~(a) \\
+
+\includegraphics[scale=0.5]{R2/LT50.pdf}\\~ ~ ~ ~ ~(b)
+
+\caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+  \label{Figures/ch4/R2/LT}
+\end{figure}
+
+Comparison shows that Model-5, which uses less number of primary points, is the best one because it is less energy consuming during the network lifetime. It is also the better one from the point of view of coverage ratio. Our proposed Model-5 efficiently prolongs the network lifetime with a good coverage ratio in comparison with other models. Therefore, we have chosen Model-5 for all the experiments presented thereafter. 
+
+%\end{enumerate}
+
+
 \subsection{Results and analysis}
 
 \subsubsection{Coverage ratio} 
@@ -1376,7 +1541,7 @@ versions. This is  easy to understand since the bigger the  number of rounds and
 
 
 \subsubsection{Execution time}
-
+\label{et}
 We observe  the impact of the  network size and of  the number of  rounds on the
 computation  time.   Figure~\ref{fig77} gives  the  average  execution times  in
 seconds (needed to solve optimization problem) for different values of $T$. The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the Mixed Integer Linear Program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. The
diff --git a/fig21.pdf b/fig21.pdf
new file mode 100644 (file)
index 0000000..1d32fcc
Binary files /dev/null and b/fig21.pdf differ
diff --git a/fig22.pdf b/fig22.pdf
new file mode 100644 (file)
index 0000000..7cc4a50
Binary files /dev/null and b/fig22.pdf differ
diff --git a/fig24.pdf b/fig24.pdf
new file mode 100644 (file)
index 0000000..d774bcd
Binary files /dev/null and b/fig24.pdf differ
diff --git a/fig25.pdf b/fig25.pdf
new file mode 100644 (file)
index 0000000..5e50035
Binary files /dev/null and b/fig25.pdf differ
diff --git a/fig26.pdf b/fig26.pdf
new file mode 100644 (file)
index 0000000..f369523
Binary files /dev/null and b/fig26.pdf differ
diff --git a/principles13.pdf b/principles13.pdf
new file mode 100644 (file)
index 0000000..9d30005
Binary files /dev/null and b/principles13.pdf differ