1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage{amsfonts,amssymb}
7 \usepackage{algpseudocode}
10 \algnewcommand\algorithmicinput{\textbf{Input:}}
11 \algnewcommand\Input{\item[\algorithmicinput]}
13 \algnewcommand\algorithmicoutput{\textbf{Output:}}
14 \algnewcommand\Output{\item[\algorithmicoutput]}
16 \newcommand{\Time}[1]{\mathit{Time}_\mathit{#1}}
17 \newcommand{\Prec}{\mathit{prec}}
18 \newcommand{\Ratio}{\mathit{Ratio}}
21 %\usepackage[textsize=footnotesize]{todonotes}
22 %\newcommand{\LZK}[2][inline]{%
23 %\todo[color=green!40,#1]{\sffamily\textbf{LZK:} #2}\xspace}
25 \title{A scalable multisplitting algorithm for solving large sparse linear systems}
31 \author{Raphaël Couturier \and Lilia Ziane Khodja}
36 %%%%%%%%%%%%%%%%%%%%%%%%
37 %%%%%%%%%%%%%%%%%%%%%%%%
40 In this paper we revisit the Krylov multisplitting algorithm presented in
41 \cite{huang1993krylov} which uses a sequential method to minimize the Krylov
42 iterations computed by a multisplitting algorithm. Our new algorithm is based on
43 a parallel multisplitting algorithm with few blocks of large size using a
44 parallel GMRES method inside each block and on a parallel Krylov minimization in
45 order to improve the convergence. Some large scale experiments with a 3D Poisson
46 problem are presented with up to 8,192 cores. They show the obtained
47 improvements compared to a classical GMRES both in terms of number of iterations
51 %%%%%%%%%%%%%%%%%%%%%%%%
52 %%%%%%%%%%%%%%%%%%%%%%%%
54 \section{Introduction}
55 Iterative methods are used to solve large sparse linear systems of equations of
56 the form $Ax=b$ because they are easier to parallelize than direct ones. Many
57 iterative methods have been proposed and adapted by many researchers. For
58 example, the GMRES method and the Conjugate Gradient method are very well known
59 and used by many researchers~\cite{S96}. Both methods are based on the
60 Krylov subspace which consists in forming a basis of a sequence of successive
61 matrix powers times the initial residual.
63 When solving large linear systems with many cores, iterative methods often
64 suffer from scalability problems. This is due to their need for collective
65 communications to perform matrix-vector products and reduction operations.
66 Preconditioners can be used in order to increase the convergence of iterative
67 solvers. However, most of the good preconditioners are not scalable when
68 thousands of cores are used.
70 Traditional iterative solvers have global synchronizations that penalize the
71 scalability. Two possible solutions consists either in using asynchronous
72 iterative methods~\cite{ref18} or to use multisplitting algorithms. In this
73 paper, we will reconsider the use of a multisplitting method. In opposition to
74 traditional multisplitting method that suffer from slow convergence, as
75 proposed in~\cite{huang1993krylov}, the use of a minimization process can
76 drastically improve the convergence.
79 %%%%%%%%%%%%%%%%%%%%%%%%
80 %%%%%%%%%%%%%%%%%%%%%%%%
82 \section{Related works and presention of the multisplitting method}
83 A general framework for studying parallel multisplitting has been presented in~\cite{o1985multi}
84 by O'Leary and White. Convergence conditions are given for the
85 most general case. Many authors improved multisplitting algorithms by proposing
86 for example an asynchronous version~\cite{bru1995parallel} and convergence
87 conditions~\cite{bai1999block,bahi2000asynchronous} in this case or other
88 two-stage algorithms~\cite{frommer1992h,bru1995parallel}.
90 In~\cite{huang1993krylov}, the authors proposed a parallel multisplitting
91 algorithm in which all the tasks except one are devoted to solve a sub-block of
92 the splitting and to send their local solutions to the first task which is in
93 charge to combine the vectors at each iteration. These vectors form a Krylov
94 basis for which the first task minimizes the error function over the basis to
95 increase the convergence, then the other tasks receive the updated solution until
96 convergence of the global system.
98 In~\cite{couturier2008gremlins}, the authors proposed practical implementations
99 of multisplitting algorithms to solve large scale linear systems. Inner solvers
100 could be based on sequential direct method with the LU method or sequential iterative
103 In~\cite{prace-multi}, the authors have proposed a parallel multisplitting
104 algorithm in which large blocks are solved using a GMRES solver. The authors have
105 performed large scale experiments up-to 32,768 cores and they conclude that
106 asynchronous multisplitting algorithm could be more efficient than traditional
107 solvers on an exascale architecture with hundreds of thousands of cores.
109 So compared to these works, we propose in this paper a practical multisplitting method based on parallel iterative blocks and gives better results than classical GMRES method for the 3D Poisson problem we considered.
112 The key idea of a multisplitting method to solve a large system of linear equations $Ax=b$ is defined as follows. The first step consists in partitioning the matrix $A$ in $L$ several ways
117 where for all $\ell\in\{1,\ldots,L\}$ $M_\ell$ are non-singular matrices. Then the linear system is solved by iteration based on the obtained splittings as follows
119 x^{k+1}=\displaystyle\sum^L_{\ell=1} E_\ell M^{-1}_\ell (N_\ell x^k + b),~k=1,2,3,\ldots
122 where $E_\ell$ are non-negative and diagonal weighting matrices and their sum is an identity matrix $I$. The convergence of such a method is dependent on the condition
124 \rho(\displaystyle\sum^L_{\ell=1}E_\ell M^{-1}_\ell N_\ell)<1.
127 where $\rho$ is the spectral radius of the square matrix.
129 The advantage of the multisplitting method is that at each iteration $k$ there are $L$ different linear sub-systems
131 v_\ell^k=M^{-1}_\ell N_\ell x_\ell^{k-1} + M^{-1}_\ell b,~\ell\in\{1,\ldots,L\},
134 to be solved independently by a direct or an iterative method, where $v_\ell$ is the solution of the local sub-system. Thus the computations of $\{v_\ell\}_{1\leq \ell\leq L}$ may be performed in parallel by a set of processors. A multisplitting method using an iterative method as an inner solver is called an inner-outer iterative method or a two-stage method. The results $v_\ell$ obtained from the different splittings~(\ref{eq04}) are combined to compute solution $x$ of the linear system by using the diagonal weighting matrices
136 x^k = \displaystyle\sum^L_{\ell=1} E_\ell v_\ell^k,
139 In the case where the diagonal weighting matrices $E_\ell$ have only zero and one factors (i.e. $v_\ell$ are disjoint vectors), the multisplitting method is non-overlapping and corresponds to the block Jacobi method.
141 %%%%%%%%%%%%%%%%%%%%%%%%
142 %%%%%%%%%%%%%%%%%%%%%%%%
144 \section{A two-stage method with a minimization}
145 Let $Ax=b$ be a given large and sparse linear system of $n$ equations to solve in parallel on $L$ clusters of processors, physically adjacent or geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square and non-singular matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ is the right-hand side vector. The multisplitting of this linear system is defined as follows
149 A & = & [A_{1}, \ldots, A_{L}]\\
150 x & = & [X_{1}, \ldots, X_{L}]\\
151 b & = & [B_{1}, \ldots, B_{L}]
156 where for $\ell\in\{1,\ldots,L\}$, $A_\ell$ is a rectangular block of size $n_\ell\times n$ and $X_\ell$ and $B_\ell$ are sub-vectors of size $n_\ell$ each, such that $\sum_\ell n_\ell=n$. In this work, we use a row-by-row splitting without overlapping in such a way that successive rows of sparse matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster. So, the multisplitting format of the linear system is defined as follows
158 \forall \ell\in\{1,\ldots,L\} \mbox{,~} A_{\ell \ell}X_\ell + \displaystyle\sum_{\substack{m=1\\m\neq\ell}}^L A_{\ell m}X_m = B_\ell,
161 where $A_{\ell m}$ is a sub-block of size $n_\ell\times n_m$ of the rectangular matrix $A_\ell$, $X_m\neq X_\ell$ is a sub-vector of size $n_m$ of the solution vector $x$ and $\sum_{m\neq \ell}n_m+n_\ell=n$, for all $m\in\{1,\ldots,L\}$.
163 Our multisplitting method proceeds by iteration to solve the linear system in such a way that each sub-system
167 A_{\ell \ell}X_\ell = Y_\ell \mbox{,~such that}\\
168 Y_\ell = B_\ell - \displaystyle\sum_{\substack{m=1\\m\neq \ell}}^{L}A_{\ell m}X_m,
173 is solved independently by a {\it cluster of processors} and communications are required to update the right-hand side vectors $Y_\ell$, such that the vectors $X_m$ represent the data dependencies between the clusters. In this work, we use the parallel restarted GMRES method~\cite{ref34} as an inner iteration method to solve sub-systems~(\ref{sec03:eq03}). GMRES is one of the most used Krylov iterative methods to solve sparse linear systems. %In practice, GMRES is used with a preconditioner to improve its convergence. In this work, we used a preconditioning matrix equivalent to the main diagonal of sparse sub-matrix $A_{ll}$. This preconditioner is straightforward to implement in parallel and gives good performances in many situations.
175 It should be noted that the convergence of the inner iterative solver for the
176 different sub-systems~(\ref{sec03:eq03}) does not necessarily involve the
177 convergence of the multisplitting method. It strongly depends on the properties
178 of the global sparse linear system to be
179 solved~\cite{o1985multi,ref18}. Furthermore, the splitting of the linear system
180 among several clusters of processors increases the spectral radius of the
181 iteration matrix, thereby slowing the convergence. In fact, the larger the
182 number of splitting is, the larger the spectral radius is. In this paper, we
183 based on the work presented in~\cite{huang1993krylov} to increase the
184 convergence and improve the scalability of the multisplitting methods.
186 In order to accelerate the convergence, we implemented the outer iteration of the multisplitting solver as a Krylov iterative method which minimizes some error function over a Krylov subspace~\cite{S96}. The Krylov subspace that we used is spanned by a basis composed of successive solutions issued from solving the $L$ splittings~(\ref{sec03:eq03})
188 S=\{x^1,x^2,\ldots,x^s\},~s\leq n,
191 where for $j\in\{1,\ldots,s\}$, $x^j=[X_1^j,\ldots,X_L^j]$ is a solution of the global linear system. The advantage of such a Krylov subspace is that we need neither an orthogonal basis nor synchronizations between clusters to generate this basis.
193 The multisplitting method is periodically restarted every $s$ iterations with a new initial guess $\tilde{x}=S\alpha$ which minimizes the error function $\|b-Ax\|_2$ over the Krylov subspace spanned by vectors of $S$. So $\alpha$ is defined as the solution of the large overdetermined linear system
198 where $R=AS$ is a dense rectangular matrix of size $n\times s$ and $s\ll n$. This leads us to solve a system of normal equations
203 which is associated with the least squares problem
205 \text{minimize}~\|b-R\alpha\|_2,
208 where $R^T$ denotes the transpose of matrix $R$. Since $R$ (i.e. $AS$) and $b$ are split among $L$ clusters, the symmetric positive definite system~(\ref{sec03:eq06}) is solved in parallel. Thus an iterative method would be more appropriate than a direct one to solve this system. We use the parallel Conjugate Gradient method for the normal equations CGNR~\cite{S96,refCGNR}.
210 \begin{algorithm}[!t]
211 \caption{A two-stage linear solver with inner iteration GMRES method}
212 \begin{algorithmic}[1]
213 \Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector)
214 \Output $X_\ell$ (solution sub-vector)\vspace{0.2cm}
215 \State Load $A_\ell$, $B_\ell$
216 \State Set the initial guess $x^0$
217 \State Set the minimizer $\tilde{x}^0=x^0$
218 \For {$k=1,2,3,\ldots$ until the global convergence}
219 \State Restart with $x^0=\tilde{x}^{k-1}$:
220 \For {$j=1,2,\ldots,s$}
221 \State \label{line7}Inner iteration solver: \Call{InnerSolver}{$x^0$, $j$}
222 \State Construct basis $S$: add column vector $X_\ell^j$ to the matrix $S_\ell^k$
223 \State Exchange local values of $X_\ell^j$ with the neighboring clusters
224 \State Compute dense matrix $R$: $R_\ell^{k,j}=\sum^L_{i=1}A_{\ell i}X_i^j$
226 \State \label{line12}Minimization $\|b-R\alpha\|_2$: \Call{UpdateMinimizer}{$S_\ell$, $R$, $b$, $k$}
227 \State Local solution of linear system $Ax=b$: $X_\ell^k=\tilde{X}_\ell^k$
228 \State Exchange the local minimizer $\tilde{X}_\ell^k$ with the neighboring clusters
233 \Function {InnerSolver}{$x^0$, $j$}
234 \State Compute local right-hand side $Y_\ell = B_\ell - \sum^L_{\substack{m=1\\m\neq \ell}}A_{\ell m}X_m^0$
235 \State Solving local splitting $A_{\ell \ell}X_\ell^j=Y_\ell$ using parallel GMRES method, such that $X_\ell^0$ is the initial guess
236 \State \Return $X_\ell^j$
241 \Function {UpdateMinimizer}{$S_\ell$, $R$, $b$, $k$}
242 \State Solving normal equations $(R^k)^TR^k\alpha^k=(R^k)^Tb$ in parallel by $L$ clusters using parallel CGNR method
243 \State Compute local minimizer $\tilde{X}_\ell^k=S_\ell^k\alpha^k$
244 \State \Return $\tilde{X}_\ell^k$
250 The main key points of our Krylov multisplitting method to solve a large sparse linear system are given in Algorithm~\ref{algo:01}. This algorithm is based on a two-stage method with a minimization using restarted GMRES iterative method as an inner solver. It is executed in parallel by each cluster of processors. Matrices and vectors with the subscript $\ell$ represent the local data for cluster $\ell$, where $\ell\in\{1,\ldots,L\}$. The two-stage solver uses two different parallel iterative algorithms: GMRES method to solve each splitting~(\ref{sec03:eq03}) on a cluster of processors, and CGNR method executed in parallel by all clusters to minimize the function error~(\ref{sec03:eq07}) over the Krylov subspace spanned by $S$. The algorithm requires two global synchronizations between $L$ clusters. The first one is performed at line~\ref{line12} in Algorithm~\ref{algo:01} to exchange local values of vector solution $x$ (i.e. the minimizer $\tilde{x}$) required to restart the multisplitting solver. The second one is needed to construct the matrix $R$. We chose to perform this latter synchronization $s$ times in every outer iteration $k$ (line~\ref{line7} in Algorithm~\ref{algo:01}). This is a straightforward way to compute the sparse matrix-dense matrix multiplication $R=AS$. We implemented all synchronizations by using message passing collective communications of MPI library.
252 %%%%%%%%%%%%%%%%%%%%%%%%
253 %%%%%%%%%%%%%%%%%%%%%%%%
255 \section{Experiments}
256 In order to illustrate the interest of our algorithm. We have compared our
257 algorithm with the GMRES method which is a very well used method in many
258 situations. We have chosen to focus on only one problem which is very simple to
259 implement: a 3 dimension Poisson problem.
264 \nabla u&=f \mbox{~in~} \omega\\
265 u &=0 \mbox{~on~} \Gamma=\partial \omega
270 After discretization, with a finite difference scheme, a seven point stencil is
271 used. It is well-known that the spectral radius of matrices representing such
272 problems are very close to 1. Moreover, the larger the number of discretization
273 points is, the closer to 1 the spectral radius is. Hence, to solve a matrix
274 obtained for a 3D Poisson problem, the number of iterations is high. Using a
275 preconditioner it is possible to reduce the number of iterations but
276 preconditioners are not scalable when using many cores.
278 %Doing many experiments with many cores is not easy and requires to access to a supercomputer with several hours for developing a code and then improving it.
279 In the following we present some experiments we could achieved out on the Hector
280 architecture, a UK's high-end computing resource, funded by the UK
281 Research Councils. This is a Cray XE6 supercomputer, equipped with two 16-core
282 AMD Opteron 2.3 Ghz and 32 GB of memory. Machines are interconnected with a 3D
285 Table~\ref{tab1} shows the result of the experiments. The first column shows
286 the size of the 3D Poisson problem. The size is chosen in order to have
287 approximately 50,000 components per core. The second column represents the
288 number of cores used. In parenthesis, there is the decomposition used for the
289 Krylov multisplitting. The third column and the sixth column respectively show
290 the execution time for the GMRES and the Krylov multisplitting codes. The fourth
291 and the seventh column describes the number of iterations. For the
292 multisplitting code, the total number of inner iterations is represented in
293 parenthesis. For the GMRES code (alone and in the multisplitting version) the
294 restart parameter is fixed to 16. The precision of the GMRES version is fixed to
295 1e-6. For the multisplitting, there are two precisions, one for the external
296 solver which is fixed to 1e-6 and another one for the inner solver (GMRES) which
297 is fixed to 1e-10. It should be noted that a high precision is used but we also
298 fixed a maximum number of iterations for each internal step. In practice, we
299 limit the number of iterations in the internal step to 10. So an internal iteration is finished
300 when the precision is reached or when the maximum internal number of iterations
301 is reached. The precision and the maximum number of iterations of CGNR method are fixed to 1e-25 and 20 respectively. The size of the Krylov subspace basis $S$ is fixed to 10 vectors.
305 \begin{tabular}{|c|c||c|c|c||c|c|c||c|}
307 \multirow{2}{*}{Pb size}&\multirow{2}{*}{Nb. cores} & \multicolumn{3}{c||}{GMRES} & \multicolumn{3}{c||}{Krylov Multisplitting} & \multirow{2}{*}{Ratio}\\
309 & & Time (s) & nb Iter. & $\Delta$ & Time (s)& nb Iter. & $\Delta$ & \\
311 $468^3$ & 2,048 (2x1,024) & 299.7 & 41,028 & 5.02e-8 & 48.4 & 691(6,146) & 8.24e-08 & 6.19 \\
313 $590^3$ & 4,096 (2x2,048) & 433.1 & 55,494 & 4.92e-7 & 74.1 & 1,101(8,211) & 6.62e-08 & 5.84 \\
315 $743^3$ & 8,192 (2x4,096) & 704.4 & 87,822 & 4.80e-07 & 151.2 & 3,061(14,914) & 5.87e-08 & 4.65 \\
317 $743^3$ & 8,192 (4x2,048) & 704.4 & 87,822 & 4.80e-07 & 110.3 & 1,531(12,721) & 1.47e-07& 6.39 \\
327 From these experiments, it can be observed that the multisplitting version is
328 always faster than the GMRES version. The acceleration gain of the
329 multisplitting version is between 4 and 6. It can be noticed that the number of
330 iterations is drastically reduced with the multisplitting version even it is not
331 neglectable. Moreover, with 8,192 cores, we can see that using 4 clusters gives
332 better performance than simply using 2 clusters. In fact, we can remark that the
333 precision with 2 clusters is slightly better but in both cases the precision is
334 under the specified threshold.
336 \section{Conclusion and perspectives}
337 We have implemented a Krylov multisplitting method to solve sparse linear
338 systems on large-scale computing platforms. We have developed a synchronous
339 two-stage method based on the block Jacobi multisaplitting which uses GMRES
340 iterative method as an inner iteration. Our contribution in this paper is
341 twofold. First we provide a multi cluster decomposition that allows us to choose
342 the appropriate size of the clusters according to the architecures of the
343 supercomputer. Second, we have implemented the outer iteration of the
344 multisplitting method as a Krylov subspace method which minimizes some error
345 function. This increases the convergence and improves the scalability of the
346 multisplitting method.
348 We have tested our multisplitting method to solve the sparse linear system
349 issued from the discretization of a 3D Poisson problem. We have compared its
350 performances to the classical GMRES method on a supercomputer composed of 2,048
351 to 8,192 cores. The experimental results showed that the multisplitting method is
352 about 4 to 6 times faster than the GMRES method for different sizes of the
353 problem split into 2 or 4 blocks when using multisplitting method. Indeed, the
354 GMRES method has difficulties to scale with many cores while the Krylov
355 multisplitting method allows to hide latency and reduce the inter-cluster
358 In future works, we plan to conduct experiments on larger number of cores and
359 test the scalability of our Krylov multisplitting method. It would be
360 interesting to validate its performances to solve other linear/nonlinear and
361 symmetric/nonsymmetric problems. Moreover, we intend to develop multisplitting
362 methods based on asynchronous iteration in which communications are overlapped
363 by computations. These methods would be interesting for platforms composed of
364 distant clusters interconnected by a high-latency network. In addition, we
365 intend to investigate the convergence improvements of our method by using
366 preconditioning techniques for Krylov iterative methods and multisplitting
367 methods with overlapping blocks.
370 %Other applications (=> other matrices)\\
371 %Larger experiments\\
377 %%%%%%%%%%%%%%%%%%%%%%%%
378 %%%%%%%%%%%%%%%%%%%%%%%%
380 \bibliographystyle{plain}
381 \bibliography{biblio}